

Juego de Instrucciones

<u>Índice</u>

Introducción	5
ADC - Suma con Acarreo	6
ADD - Suma sin Acarreo	
AIS – Suma el valor Inmediato al Puntero de Pila (con signo)	8
AIX - Suma el Valor Inmediato al Registro de índice (con signo)	9
AND - AND Lógico	10
ASL - Desplazamiento Aritmético a la Izquierda	
ASR - Desplazamiento Aritmético a la Derecha	
BCC - Bifurcación si se pone a 0 el Acarreo	13
BCLR n - Pone a 0 un Bit en la Memoria	
BCS - Bifurcación si el Acarreo es 1	
BEQ - Bifurcación si es Igual	
\pmb{BGE} - Bifurcación si es Mayor que o Igual a (operandos con signo)	
BGT - Bifurcación si es Mayor que (operandos con signo)	18
BHCC - Bifurcación si Medio Acarreo es 0	19
BHCC - Bifurcación si Medio Acarreo es 0	19
BHCS - Bifurcación si Medio Acarreo es 1	20
BHI - Bifurcación si es Mayor	21
BHS - Bifurcación si es Mayor o Igual	22
BIH - Bifurcación si el pin de Interrupción está a 1	23
BIL - Bifurcación si el Pin de Interrupción está a 0	24
BIT - Bit de Prueba de la Memoria con el Acumulador	25
\pmb{BGE} - Bifurcación si es Mayor que o Igual a (operandos con signo)	26
BGT - Bifurcación si es Mayor que (operandos con signo)	27
BLE - Bifurcación si es Menor que o Igual a (Operandos con signo)	
BLO - Bifurcación si es más Menor	
BLS - Bifurcación si es Menor o Igual	

BLT - Bifurcación si es Menor que (Operandos con signo)	31
BMC - Bifurcación si la Máscara de Interrupción es 0	32
BMI - Bifurcación si es Menor	
BMS - Bifurcación si la Máscara de Interrupción es 1	34
BNE - Bifurcación si no es Igual	35
BPL - Bifurcación si es Positivo	
BRA - Bifurcación Incondicional	
BRCLR n - Bifurcación si el Bit n es Cero	
BRN - Nunca Bifurcación	
BRSET n - Bifurcación si el Bit n es 1	
BSET n - Pone a 1 el Bit en la Memoria	
BSR - Bifurcación a Subrutina	42
CBEQ - Compara y Bifurca si es Igual	43
CBEQA - Compara A con Inmediato, Bifurca si es Igual	44
CBEQX - Compara X con Inmediato, Bifurca si es Igual	45
CLC - Pone a Cero el Bit de Acarreo	46
CLI - Pone a Cero el Bit de Máscara de Interrupción	47
CLR - Pone a Cero	48
CLRH - Borra la parte alta del Registro de Índice (H)	49
CMP - Compara el Acumulador con la Memoria	50
COM - Complemento	51
CPHX - Compara el Registro de Índice con la Memoria	52
CPX - Compara el Registro de Índice con la Memoria	53
DAA - Ajuste Decimal del Acumulador	54
DBNZ - Decrementa y Bifurca si no es Cero	
DEC - Decrementa	
DIV - Divide	
EOR - OR-Exclusiva de la Memoria con el Acumulador	
INC - Incrementa	59

JMP - Salto	60
JSR - Salto a Subrutina	
LDA - Carga el Acumulador desde la Memoria	62
LDHX - Carga el Registro de Índice con la Memoria	63
LDX - Carga el Registro de Índice desde la Memoria	64
LSL - Desplazamiento Lógico a la Izquierda	65
LSR - Desplazamiento Lógico a la Derecha	66
MOV - Mueve	67
MUL - Multiplicación Sin Signo	68
NEG - Negado	69
NOP - No Operación	70
NSA - Cambia los "nibbles" del Acumulador	71
ORA - OR-Inclusiva	72
PSHA - Pone el Acumulador en la Pila	73
PSHH - Pone la parte alta del Registro Índice (H) en la Pila	74
PSHX - Pone la parte baja del Registro Índice (X) en la Pila	75
PULA - Saca el Acumulador de la Pila	76
PULH - Saca la parte alta del Registro Índice (H) de la Pila	77
PULX - Saca la parte baja del Registro Índice (H) de la Pila	78
ROL - Rotación a la Izquierda por Acarreo	79
ROR - Rotación a la Derecha por Acarreo	80
RSP - Reset del Puntero de Pila	
RTI - Retorno de la Interrupción	
RTS - Retorno de Subrutina	83
SBC - Subtracción con Acarreo	84
SEC - Pone a 1 el bit de Acarreo	85
SEI - Pone a 1 el Bit de la Máscara de Interrupción	
STA - Guarda el Acumulador en la Memoria	87
STHX - Guarda el Registro de Índice	88

STOP - Habilita la IRQ y Para el Oscilador	89
STX - Guarda el Registro de Índice X en la Memoria	90
SUB - Substracción	91
SWI - Interrupción por Software	92
STHX - Guarda el Registro de Índice	93
TAX - Transfiere el Acumulador al Registro de Índice	94
TPA - Transfiere el Registro de Código de Condición al Acumulador	95
TST - Prueba para Negativo o Cero	96
TSX - Transfiere el Puntero de Pila al Registro de Índice	97
TXA - Transfiere el Registro de Índice al Acumulador	98
TXS - Transfiere el Registro de Índice al Puntero de Pila	99
WAIT - Habilita la Interrupción, Para el Procesador	100

Introducción

(rel)

Esta sección contiene información detallada de todas las instrucciones del 68HC08. Las instrucciones están puestas por orden alfabético incluyendo los mnemónicos, para una localización más fácil. En las definiciones se usan las nomenclaturas siguientes:

```
(a) Operandos
                 = Contenidos de Registro o Posición de Memoria Mostrados entre Paréntesis
        ()
                 = Está Cargado con (Lee: coge)
                 = se Saca de la Pila
                 = se Guarda en la Pila
                 = AND Booleana
                = Suma Aritmética (Excepto donde se usó como OR Inclusiva en la fórmula Booleana)
        \oplus
                 = OR Exclusiva Booleana
        X
                 = Multiplica
                 = Encadena
                 = Negado (Complemento a Dos)
(b) Registros de la CPU
        ACCA = Acumulador
                 = Registro de Código de Condición
        CCR
        X
                 = Registro de Índice
        PC
                 = Contador de Programa
                 = Contador de Programa, Orden más Alto (los 8 bits más significativos)
        PCH
                 = Contador de Programa, Orden más Bajo (los 8 bits menos significativos)
        PCL
        SP
                 = Puntero de Pila
(c) Memoria y Direccionamiento
                 = Una posición de memoria o datos absolutos, dependiendo del modo de direccionamiento
                = Desplazamiento Relativo; por ejemplo, el número complemento a dos guardado en el último
        Rel
                byte de código de código máquina que corresponde a una instrucción de bifurcación
(d) Bits del Registro de Código de Condición (CCR)
                = Medio Acarreo, Bit 4
                 = Máscara de Interrupción, Bit 3
        Ι
        Ν
                 = Indicador de Negativo, Bit 2
        Z
                 = Indicador de Cero, Bit 1
        C
                 = Acarreo (Carry/Borrow), Bit 0
(e) Bit de Estado ANTES de la Ejecución (n = 7, 6, 5...0)
                 = Bit n del registro ACCA
                 = Bit n del registro X
        Xn
                 = Bit n del registro M
        Mn
(f) Bit de estado DESPUÉS de la ejecución
                = Bit n del Resultado (n = 7, 6, 5...0)
(g) Actividad Resumen del CCR, símbolos utilizados
                = Bit no Afectado
        0
                = Bit Forzado a 0
        1
                = Bit Forzado a 1
        1
                = Bit Puesto 0 o a 1 según los Resultados de la Operación
(h) Anotación utilizada del Código Máquina
                = 8 bits más bajos de una Dirección Directa $0000-$00FF; Byte Alto asumido para ser $0000
                 = Los 8 Bits más Altos de un Desplazamiento de 16 bits
        ee
                 = Los 8 Bits más Bajos de un Desplazamiento de 16 bits o de 8-Bits
        ff
                 = Un Byte de Datos Inmediato
        ii
                 = El Byte más Alto de los 16-Bits de una Dirección Extendida
                 = El Byte más Bajo de los 16-Bits de una Dirección Extendida
                 = Desplazamiento Relativo
        rr
(i) Anotación de forma de Fuente
                 = Operando; Uno o Dos Bytes que dependen del Modo de Direccionamiento
        (opr)
                 = Desplazamiento Relativo Usado en instrucciones de Bifurcación y de Manipulación de Bit
```


ADC - Suma con Acarreo

Operación: $ACCA \leftarrow (ACCA) + (M) + (C)$

Descripción: Suma los contenidos del bit C a la suma de los contenidos del registro ACCA y del registro M, pone el resultado en el registro ACCA.

Códigos de condición y Formula Boleana

			Η	I	N	Z	C
1	1	1	\$	_	\$	\$	\$

H $A3 \bullet M3 + M3 \bullet \overline{R3} + \overline{R3} \bullet A3$

Se pone a 1 si había un acarreo del bit 3; de lo contrario se pone a 0.

N *R7*

Se pone a 1 si el resultado del MSB es 1; de lo contrario se pone a 0.

Z $\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$

Se pone a 1 si todos los bits del resultado se ponen a 0; de lo contrario se pone a 0.

 $\mathbf{C} \qquad \qquad A7 \bullet M7 + M7 \bullet \overline{R7} + \overline{R7} \bullet A7$

Se pone a 1 si había un acarreo del resultado del MSB; de lo contrario se pone a 0.

Código	Modo de	Códi	Ciclos		
Fuente	Direccionamiento	Opcode Operando(s)		1	
ADC (opr)	IMM	A9	ii		2
ADC (opr)	DIR	В9	dd		3
ADC (opr)	EXT	C9	hh	11	4
ADC ,X	IX	F9			3
ADC (opr),X	IX1	E9	ff		4
ADC (opr),X	IX2	D9	Ee	ff	5

ADD - Suma sin Acarreo

Operación: $ACCA \leftarrow (ACCA) + (M)$

Descripción: Suma los contenidos de M a los contenidos de ACCA y pone el resultado en ACCA.

Códigos de condición y Formula Boleana

			Η	I	N	Z	C
1	1	1	\$		\$	\$	+

 $\mathbf{H} \qquad \qquad A3 \bullet M3 + M3 \bullet \overline{R3} + \overline{R3} \bullet A3$

Se pone a 1 si había un acarreo del bit 3; de lo contrario se pone a 0.

N *R7*

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

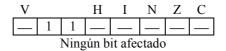
Z $\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$

Se pone a 1 si todos los bits del resultado se ponen a 0; de lo contrario se pone a 0.

C $A7 \bullet M7 + M7 \bullet \overline{R7} + \overline{R7} \bullet A7$

Se pone a 1 si había un acarreo del resultado del MSB; de lo contrario se pone a 0.

Código	Modo de	Código Máquina			Ciclos
Fuente	Direccionamiento	Opcode	Operando(s)		
ADD (opr)	IMM	AB	ii		2
ADD (opr)	DIR	BB	dd		3
ADD (opr)	EXT	CB	hh	11	4
ADD ,X	IX	FB			3
ADD (opr),X	IX1	EB	ff		4
ADD (opr),X	IX2	DB	ee	ff	5


AIS - Suma el valor Inmediato al Puntero de Pila (con signo)

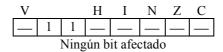
Operación: $SP \leftarrow (SP) + (16 \ll M)$

Descripción: Suma el operando inmediato al Stack pointer (SP). El valor inmediato es un operando de 8 bits complemento a dos con signo. El operando de 8 bits es extendido a 16 bits con signo, anterior a la suma. La instrucción AIS se puede usar para crear y quitar un 'buffer' de la zona del stack, que se usa para guardar temporalmente las variables.

Esta instrucción no afecta ningún bit de código de condición, para que la información de estado se pueda pasar a/o de una subrutina o función C y asignando o no el espacio para las variables locales que no perturbarán esa información de estado.

Códigos de condición y Formula Boleana

Código	Modo de	Cód	HC08		
Fuente	Direccionamiento	Opcode	Opera	indo(s)	Ciclos
AIS #opr	IMM	A7	ii	ii	2


AIX - Suma el Valor Inmediato al Registro de índice (con signo)

Operación: $H:X \leftarrow (H:X) + (16 \ll M)$

Descripción: Suma el operando inmediato al Registro de índice de 16 bits, formado por la concatenación del registro H y X. El operando inmediato es un offset de 8 bits complemento a dos con signo. El operando de 8 bits es extendido a 16 bits con signo anterior a la suma.

Esta instrucción no afecta ningún bit de código de condición, para que los cálculos del puntero del registro de índice no perturbará el código circundante que puede consultar de forma segura el estado de los bits de estado del CCR..

Códigos de condición y Formula Boleana

Código	Modo de	Cód	HC08	
Fuente	Direccionamiento	Opcode	Operando(s)	Ciclos
AIX #opr	IMM	AF	ii	2

AND - AND Lógico

Operación: $ACCA \leftarrow (ACCA) \cdot (M)$

Descripción: Realiza un AND lógico entre el contenido ACCA y M, pone el resultado en ACCA. (Cada bit del ACCA después de la operación será un AND lógico de los correspondientes bits de M y ACCA antes de la operación.)

Códigos de condición y Formula Boleana

			Η	I	N	Z	C
1	1	1			\$	\$	

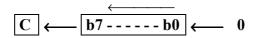
N R7

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

Z $\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$

Se pone a 1 si todos los bits del resultado se ponen a 0; de lo contrario se pone a 0.

Código Fuente	Modo de	Código Máquina			Ciclos
	Direccionamiento	Opcode	Operando(s)		
AND (opr)	IMM	A4	ii		2
AND (opr)	DIR	B4	dd		3
AND (opr)	EXT	C4	hh	11	4
AND ,X	IX	F4			3
AND (opr),X	IX1	E4	ff	•	4
AND (opr),X	IX2	D4	ee	ff	5



ASL - Desplazamiento Aritmético a la Izquierda

(Lo mismo que la instrucción LSL)

Operación:

Descripción: Desplaza un lugar a la izquierda todos los bits del ACCA, X o M. El Bit 0 está cargado con un cero. El bit C en el CCR está cargado con el bit más significativo de ACCA, X o M.

Códigos de condición y Formula Boleana

 \mathbf{N}

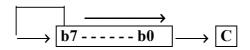
Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

Z $\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$

Se pone a 1 si todos los bits del resultado se ponen a 0; de lo contrario se pone a 0.

C b7

Se pone a 1 si antes del desplazamiento el valor MSB del valor desplazado era 1; de lo contrario se pone a 0.


Código Fuente	Modo de Código Máquina			Ciclos
	Direccionamiento	Opcode	Operando(s)	
ASLA	INH (A)	48		3
ASLX	INH (X)	58		3
ASL (opr)	DIR	38	dd	5
ASL	IX	78		5
ASL (opr),X	IX1	68	ff	6

ASR - Desplazamiento Aritmético a la Derecha

Operación:

Descripción: Desplaza todos los bits un lugar a la derecha del ACCA, X o M. El Bit 7 se mantiene constante. El Bit 0 está cargado en el Bit C del CCR. Esta operación divide eficazmente un valor complemento a dos por dos sin cambiar su signo. El bit de acarreo se puede usar para redondear el resultado.

Códigos de condición y Formula Boleana

$$N$$
 $R7$

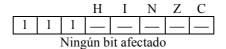
Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

$$\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$$

Se pone a 1 si todos los bits del resultado se ponen a 0; de lo contrario se pone a 0.

Se pone a 1 si antes del desplazamiento, el valor LSB del valor desplazado era 1; de lo contrario se pone a 0.

Código	Modo de	Códig	Ciclos	
Fuente	Direccionamiento	Opcode	Operando(s)	
ASRA	INH (A)	47		3
ASRX	INH (X)	57		3
ASR (opr)	DIR	37	dd	5
ASR ,X	IX	77		5
ASR (opr),X	IX1	67	ff	6


BCC - Bifurcación si se pone a 0 el Acarreo

(Lo mismo que la instrucción BHS)

Operación: $PC \leftarrow (PC) + \$0002 + Rel$ Si (C) = 0

Descripción: Prueba el estado del bit C en el CCR y provoca una bifurcación si C está a 0. Véase la instrucción BRA para más detalles de la ejecución de la bifurcación.

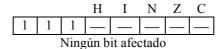
Códigos de condición y Formula Boleana

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Ciclos	
Fuente	Direccionamiento	Opcode	Operando(s)	
BCC (rel)	REL	24	rr	3

Prueba	Boole	Mnemónico	Opcode	Compleme	entario	Bifurcación	Comentario
r > m	C + Z = 0	BHI	22	r ≤ m	BLS	23	Sin signo
r ≥ m	C = 0	BHS/BCC	24	r < m	BLO/BCS	25	Sin signo
r = m	Z = 1	BEQ	27	r≠m	BNE	26	Sin signo
r ≤ m	C + Z = 1	BLS	23	r > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	R≥m	BHS/BCC	24	Sin signo
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	r ≠ 0	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable = 0			
Medio	H = 1	BHCS	29	No Medio	BHCC	28	Simple
Acarreo				Acarreo			_
IRQ Pin Alto	_	BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre		BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria



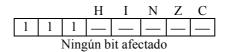
BCLR n - Pone a 0 un Bit en la Memoria

Operación: $Mn \leftarrow 0$

Descripción: Pone a 0 el Bit n (n = 7, 6, 5. . 0) en la posición M. Todos los otros bits en M no están afectados. M puede ser cualquier posición de la RAM o dirección del registro de E/S en el área de memoria de \$0000 a \$00FF (por ejemplo, en el modo de direccionamiento directo se usa para especificar la dirección del operando).

Códigos de condición y Formula Boleana

Código	Modo de	Código	o Máquina	Ciclos
Fuente	Direccionamiento	Opcode	Operando(s)	
BCLR 0,(opr)	DIR (bit 0)	11	dd	5
BCLR 1,(opr)	DIR (bit 1)	13	dd	5
BCLR 2,(opr)	DIR (bit 2)	15	dd	5
BCLR 3,(opr)	DIR (bit 3)	17	dd	5
BCLR 4,(opr)	DIR (bit 4)	19	dd	5
BCLR 5,(opr)	DIR (bit 5)	1B	dd	5
BCLR 6,(opr)	DIR (bit 6)	1D	dd	5
BCLR 7,(opr)	DIR (bit 7)	1F	dd	5


BCS - Bifurcación si el Acarreo es 1

(Lo mismo que la instrucción BLO)

Operación: $PC \leftarrow (PC) + \$0002 + Rel$ Si(C) = 1

Descripción: Prueba el estado del bit C en el CCR y provoca una bifurcación, si C está a 1. Véase la instrucción BRA para más detalles de la ejecución de la bifurcación.

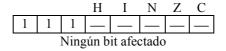
Códigos de condición y Formula Boleana

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Ciclos	
Fuente	Direccionamiento	Opcode	Operando(s)	
BCS (rel)	REL	25	rr	3

Prueba	Boole	Mnemónico	Opcode	Complem	entario	Bifurcació	Comentario
						n	
r > m	C + Z = 0	BHI	22	$R \leq m$	BLS	23	Sin signo
$r \ge m$	C = 0	BHS/BCC	24	R < m	BLO/BCS	25	Sin signo
r = m	Z = 1	BEQ	27	R ≠ m	BNE	26	Sin signo
r≤ m	C + Z = 1	BLS	23	R > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	$R \ge m$	BHS/BCC	24	Sin signo
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	r ≠ 0	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable			
				= 0			
Medio	H = 1	BHCS	29	No Medio	BHCC	28	Simple
Acarreo				Acarreo			
IRQ Pin Alto	_	BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre	_	BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria



BEQ - Bifurcación si es Igual

Operación: $PC \leftarrow (PC) + \$0002 + Rel$ Si(Z) = 1

Descripción: Prueba el estado del bit Z en el CCR y provoca una bifurcación si Z está a 1. Siguiendo a una instrucción CMP o SUB, la instrucción BEQ causará una bifurcación si los argumentos son iguales. Véase la instrucción BRA para más detalles de la ejecución de la bifurcación.

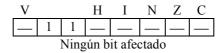
Códigos de condición y Formula Boleana

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Ciclos	
Fuente	Direccionamiento	Opcode	Operando(s)	
BEQ (rel)	REL	27	rr	3

Prueba	Boole	Mnemónico	Opcode	Compleme	entario	Bifurcación	Comentario
r > m	C + Z = 0	BHI	22	R ≤ m	BLS	23	Sin signo
r ≥ m	C = 0	BHS/BCC	24	R < m	BLO/BCS	25	Sin signo
r = m	Z = 1	BEQ	27	R ≠ m	BNE	26	Sin signo
r≤ m	C + Z = 1	BLS	23	R > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	$R \ge m$	BHS/BCC	24	Sin signo
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	r ≠ 0	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable			
				= 0			
Medio	H = 1	BHCS	29	No Medio	BHCC	28	Simple
Acarreo				Acarreo			
IRQ Pin Alto	_	BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre		BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria


BGE - Bifurcación si es Mayor que o Igual a (operandos con signo)

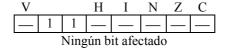
Operación: $PC \leftarrow (PC) + \$0002 + rel$ $si(N \oplus V) = 0$

Por ejemplo, si (A) (M) (números complemento a dos con signo)

Descripción: Si la instrucción BGE se ejecuta inmediatamente después de la ejecución de una instrucción de comparación o de substracción, la bifurcación ocurre si y sólo si, el número complemento a dos representado por el registro interno apropiado (A, X o H:X) era mayor que o igual, al número complemento a dos representado por M.

Códigos de condición y Formula Boleana

Código	Modo de	Cód	HC08	
Fuente	Direccionamiento	Opcode	Operando(s)	Ciclos
BGE opr	REL	90	rr	3


BGT - Bifurcación si es Mayor que (operandos con signo)

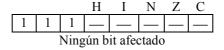
Operación: $PC \leftarrow (PC) + \$0002 + rel$ $si Z \mid (N \oplus V) = 0$

Por ejemplo, si (A) > (M) (números complemento a dos con signo)

Descripción: Si la instrucción BGT se ejecuta inmediatamente después de la ejecución de una instrucción CMP, CPX, CPHX o SUB, la bifurcación ocurre si y sólo si, el número complemento a dos representado por el registro interno apropiado (A, X o H:X) era mayor que el número complemento a dos, representado por M.

Códigos de condición y Formula Boleana

Código	Modo de	Cód	HC08	
Fuente	Direccionamiento	Opcode	Operando(s)	Ciclos
BGT opr	REL	92	rr	3



BHCC - Bifurcación si Medio Acarreo es 0

Operación: $PC \leftarrow (PC) + \$0002 + Rel$ Si(H) = 0

Descripción: Prueba el estado del bit H en el CCR y provoca una bifurcación si H está a 0. Esta instrucción se usa en algoritmos que involucran números BCD. Véase la instrucción BRA para más detalles de la ejecución de la bifurcación.

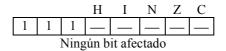
Códigos de condición y Formula Boleana

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Ciclos	
Fuente	Direccionamiento	Opcode	Operando(s)	
BHCC (rel)	REL	28	rr	3

Prueba	Boole	Mnemónico	Opcode	Compleme	entario	Bifurcación	Comentario
r > m	C + Z = 0	BHI	22	$R \le m$	BLS	23	Sin signo
$r \ge m$	C = 0	BHS/BCC	24	R < m	BLO/BCS	25	Sin signo
r = m	Z = 1	BEQ	27	R ≠ m	BNE	26	Sin signo
r≤ m	C + Z = 1	BLS	23	R > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	$R \ge m$	BHS/BCC	24	Sin signo
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	r ≠ 0	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable = 0			
Medio	H = 1	BHCS	29	No Medio	BHCC	28	Simple
Acarreo				Acarreo			
IRQ Pin Alto	_	BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre	_	BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria



BHCS - Bifurcación si Medio Acarreo es 1

Operación: $PC \leftarrow (PC) + \$0002 + Rel$ Si(H) = 1

Descripción: Prueba el estado del bit H en el CCR y provoca una bifurcación si H está a 1. Esta instrucción se usa en algoritmos que involucran números BCD. Véase la instrucción BRA para más detalles de la ejecución de la bifurcación.

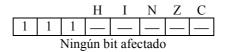
Códigos de condición y Formula Boleana

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Máquina	Ciclos
Fuente	Direccionamiento	Opcode		
BHCS (rel)	REL	29	rr	3

Prueba	Boole	Mnemónico	Opcode	Compleme	Complementario		Comentario
r > m	C + Z = 0	BHI	22	R ≤ m	BLS	23	Sin signo
$r \ge m$	C = 0	BHS/BCC	24	R < m	BLO/BCS	25	Sin signo
r = m	Z = 1	BEQ	27	R ≠ m	BNE	26	Sin signo
r≤ m	C + Z = 1	BLS	23	R > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	$R \ge m$	BHS/BCC	24	Sin signo
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	r ≠ 0	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable			
				= 0			
Medio	H = 1	BHCS	29	No Medio	BHCC	28	Simple
Acarreo				Acarreo			
IRQ Pin Alto	_	BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre	_	BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria


BHI - Bifurcación si es Mayor

Operación: $C \leftarrow (PC) + \$0002 + Rel$ Si(C) + (Z) = 0

por ejemplo, si (ACCA) > (M) (números binarios sin signo)

Descripción: Causa una bifurcación si se pone C y Z a 0. Si la instrucción BHl se ejecuta inmediatamente después de la ejecución de una instrucción CMP o SUB, ocurrirá la bifurcación si el número binario sin signo en ACCA es mayor que el número binario sin signo en M. Véase la instrucción BRA para más detalles de la ejecución de la bifurcación.

Códigos de condición y Formula Boleana

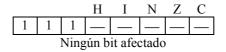
Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Máquina	Ciclos
Fuente	Direccionamiento	Opcode		
BHI (rel)	REL	22	rr	3

Prueba	Boole	Mnemónico	Opcode	Compleme	entario	Bifurcación	Comentario
r > m	C + Z = 0	BHI	22	R ≤ m	BLS	23	Sin signo
r ≥ m	C = 0	BHS/BCC	24	R < m	BLO/BCS	25	Sin signo
r = m	Z = 1	BEQ	27	R ≠ m	BNE	26	Sin signo
r≤ m	C + Z = 1	BLS	23	R > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	$R \ge m$	BHS/BCC	24	Sin signo
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	r ≠ 0	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable = 0			
Medio Acarreo	H = 1	BHCS	29	No Medio Acarreo	ВНСС	28	Simple
IRQ Pin Alto	_	BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre		BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria

BHS - Bifurcación si es Mayor o Igual


(Lo mismo que la instrucción BCC)

Operación: $PC \leftarrow (PC) + \$0002 + Rel$ Si (C) = 0

por ejemplo, si $(ACCA) \ge (M)$ (números binarios sin signo)

Descripción: Si la instrucción BHS se ejecuta inmediatamente después de la ejecución de una instrucción CMP o SUB, la bifurcación ocurrirá si el número binario sin signo en ACCA era mayor o igual al número binario sin signo en M. Véase la instrucción BRA para más detalles de la ejecución de la bifurcación.

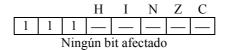
Códigos de condición y Formula Boleana

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Código Máquina				
Fuente	Direccionamiento	Opcode	Operando(s)				
BHS (rel)	REL	24	rr	3			

Prueba	Boole	Mnemónico	Opcode	Compleme	entario	Bifurcación	Comentario
r > m	C + Z = 0	BHI	22	R ≤ m	BLS	23	Sin signo
r ≥ m	C = 0	BHS/BCC	24	R < m	BLO/BCS	25	Sin signo
r = m	Z = 1	BEQ	27	R ≠ m	BNE	26	Sin signo
r≤ m	C + Z = 1	BLS	23	R > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	$R \ge m$	BHS/BCC	24	Sin signo
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	r ≠ 0	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable			
				= 0			
Medio	H = 1	BHCS	29	No Medio	BHCC	28	Simple
Acarreo				Acarreo			
IRQ Pin Alto	_	BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre		BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria



BIH - Bifurcación si el pin de Interrupción está a 1

Operación: $PC \leftarrow (PC) + \$0002 + Rel$ Si IRQ = 1

Descripción: Prueba el estado del pin de interrupción externa y provoca una bifurcación si el pin está en nivel alto. Véase la instrucción BRA para más detalles de la ejecución de la bifurcación.

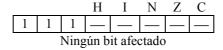
Códigos de condición y Formula Boleana

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Máquina	Ciclos
Fuente	Direccionamiento	Opcode		
BIH (rel)	REL	2F	rr	3

Prueba	Boole	Mnemónico	Opcode	Compleme	entario	Bifurcación	Comentario
r > m	C + Z = 0	BHI	22	$R \leq m$	BLS	23	Sin signo
$r \ge m$	C = 0	BHS/BCC	24	R < m	BLO/BCS	25	Sin signo
r = m	Z = 1	BEQ	27	R ≠ m	BNE	26	Sin signo
r≤ m	C + Z = 1	BLS	23	R > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	$R \ge m$	BHS/BCC	24	Sin signo
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	r ≠ 0	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable = 0			
Medio	H = 1	BHCS	29	No Medio	BHCC	28	Simple
Acarreo				Acarreo			
IRQ Pin Alto		BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre		BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria



BIL - Bifurcación si el Pin de Interrupción está a 0

Operación: $PC \leftarrow (PC) + \$0002 + Rel$ Si IRQ = 0

Descripción: Prueba el estado del pin de interrupción externa y provoca una bifurcación si el pin está en nivel bajo. Véase la instrucción BRA para más detalles de la ejecución de la bifurcación.

Códigos de condición y Formula Boleana

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Máquina	Ciclos
Fuente	Direccionamiento	Opcode Operando(s)		
BIL (rel)	REL	2E	rr	3

Prueba	Boole	Mnemónico	Opcode	Compleme	entario	Bifurcación	Comentario
r > m	C + Z = 0	BHI	22	R ≤ m	BLS	23	Sin signo
r ≥ m	C = 0	BHS/BCC	24	R < m	BLO/BCS	25	Sin signo
r = m	Z = 1	BEQ	27	R ≠ m	BNE	26	Sin signo
r≤ m	C + Z = 1	BLS	23	R > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	$R \ge m$	BHS/BCC	24	Sin signo
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	r ≠ 0	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable = 0			
Medio Acarreo	H = 1	BHCS	29	No Medio Acarreo	ВНСС	28	Simple
IRQ Pin Alto		BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre	_	BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria

BIT - Bit de Prueba de la Memoria con el Acumulador

Operación: (ACCA) · (M)

Descripción: Realiza una comparación lógica AND de los contenidos de ACCA y M, y modifica de acuerdo el código de condición. No se alteran los contenidos de ACCA ni de M. (Cada bit del resultado AND lógico, serán los bits correspondientes de ACCA y M).

Códigos de condición y Formula Boleana

			Η	I	N	Z	C
1	1	1	_		\$	\$	

N *R7*

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

Z $\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$

Se pone a 1 si el resultado es \$00; de lo contrario se pone a 0.

Código Fuente	Modo de	Código Máquina		Ciclos	
	Direccionamiento	Opcode	Opera	ndo(s)	
BIT (opr)	IMM	A5	ii		2
BIT (opr)	DIR	B5	dd		3
BIT (opr)	EXT	C5	hh	11	4
BIT ,X	IX	F5			3
BIT (opr),X	IX1	E5	ff		4
BIT (opr),X	IX2	D5	Ee	ff	5

BGE - Bifurcación si es Mayor que o Igual a (operandos con signo)

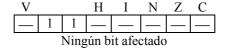
Operación: $PC \leftarrow (PC) + \$0002 + rel$ $si(N \oplus V) = 0$

Por ejemplo, si (A) (M) (números complemento a dos con signo)

Descripción: Si la instrucción BGE se ejecuta inmediatamente después de la ejecución de una instrucción de comparación o de substracción, la bifurcación ocurre si y sólo si, el número complemento a dos representado por el registro interno apropiado (A, X o H:X) era mayor que o igual, al número complemento a dos representado por M.

Códigos de condición y Formula Boleana

Código	Modo de	Cód	HC08	
ruente	Fuente Direccionamiento		Operando(s)	Ciclos
BGE opr	REL	90	rr	3


BGT - Bifurcación si es Mayor que (operandos con signo)

Operación: $PC \leftarrow (PC) + \$0002 + rel$ si $Z \mid (N \oplus V) = 0$

Por ejemplo, si (A) > (M) (números complemento a dos con signo)

Descripción: Si la instrucción BGT se ejecuta inmediatamente después de la ejecución de una instrucción CMP, CPX, CPHX o SUB, la bifurcación ocurre si y sólo si, el número complemento a dos representado por el registro interno apropiado (A, X o H:X) era mayor que el número complemento a dos, representado por M.

Códigos de condición y Formula Boleana

Código	Modo de	Cód	HC08	
Fuente Direccionamiento		Opcode	Operando(s)	Ciclos
BGT opr	REL	92	rr	3


BLE - Bifurcación si es Menor que o Igual a (Operandos con signo)

Operación: $PC \leftarrow (PC) + \$0002 + rel$ $si Z \mid (N \oplus V) = 1$

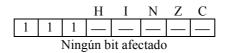
Por ejemplo, si (A) (M) (números complemento a dos con signo)

Descripción: Si la instrucción BLE se ejecuta inmediatamente después de la ejecución de una instrucción CMP, CPX, CPHX o SUB, la bifurcación ocurre si y sólo si, el número complemento a dos representado por el registro interno apropiado (A, X o H:X) era menor que o igual al número complemento a dos representado por M.

Códigos de condición y Formula Boleana

Código	Modo de	Cód	HC08	
Fuente	Direccionamiento	Opcode	Operando(s)	Ciclos
BLE opr	REL	93	rr	3

BLO - Bifurcación si es más Menor


(Lo mismo que la instrucción BCS)

Operación: $PC \leftarrow (PC) + \$0002 + Rel$ Si(C) = 1

por ejemplo, si (ACCA) < (M) (números binarios sin signo)

Descripción: Si la instrucción BLO se ejecuta inmediatamente después de la ejecución de una instrucción CMP o SUB, la bifurcación ocurrirá si el número binario sin signo en ACCA era menor del número binario sin signo en M. Véase la instrucción BRA para más detalles de la ejecución de la bifurcación.

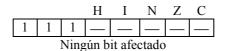
Códigos de condición y Formula Boleana

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Ciclos	
Fuente	Direccionamiento	Opcode		
BLO (rel)	REL	25	rr	3

Prueba	Boole	Mnemónico	Opcode	Complementa	rio	Bifurcación	Comentario
r > m	C + Z = 0	BHI	22	R ≤ m	BLS	23	Sin signo
r ≥ m	C = 0	BHS/BCC	24	R < m	BLO/	25	Sin signo
					BCS		
r = m	Z = 1	BEQ	27	R ≠ m	BNE	26	Sin signo
r≤ m	C + Z = 1	BLS	23	R > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	R≥m	BHS/	24	Sin signo
					BCC		
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	r ≠ 0	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable = 0			
Medio	H = 1	BHCS	29	No Medio	BHC	28	Simple
Acarreo				Acarreo	C		
IRQ Pin Alto	_	BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre	_	BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria


BLS - Bifurcación si es Menor o Igual

Operación: $PC \leftarrow (PC) + \$0002 + Rel$ Si[(C) + (Z)] = 1

por ejemplo, si $(ACCA) \le (M)$ (números binarios sin signo)

Descripción: Causa una bifurcación si C o Z se pone a 1. Si la instrucción BLS se ejecuta inmediatamente después de la ejecución de una instrucción CMP o SUB, la bifurcación ocurrirá si el número binario sin signo en ACCA fue menor o igual al número binario sin signo en M. Véase la instrucción BRA para más detalles de la ejecución de la bifurcación.

Códigos de condición y Formula Boleana

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Ciclos	
Fuente	Direccionamiento	Opcode		
BLS (rel)	REL	23	rr	3

Prueba	Boole	Mnemónico	Opcode	Complementario		Bifurca	Comentario
						ción	
r > m	C + Z = 0	BHI	22	$R \leq m$	BLS	23	Sin signo
$r \ge m$	C = 0	BHS/BCC	24	$R \le m$	BLO/BCS	25	Sin signo
r = m	Z = 1	BEQ	27	R ≠ m	BNE	26	Sin signo
r≤ m	C + Z = 1	BLS	23	R > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	$R \ge m$	BHS/BCC	24	Sin signo
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	r ≠ 0	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable = 0			_
Medio	H = 1	BHCS	29	No Medio	BHCC	28	Simple
Acarreo				Acarreo			
IRQ Pin Alto	_	BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre	_	BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria

BLT - Bifurcación si es Menor que (Operandos con signo)

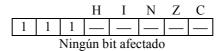
Operación: $PC \leftarrow (PC) + \$0002 + rel$ si $Z(N \oplus V) = 1$

Por ejemplo, si (A) < (M) (números complemento a dos con signo)

Descripción: Si la instrucción BLT se ejecuta inmediatamente después de la ejecución de una instrucción CMP, CPX, CPHX o SUB, la bifurcación ocurrirá si y sólo si, el número complemento a dos representado por el registro interno apropiado (A, X o H:X) era menor que o igual al número complemento a dos representado por M

Códigos de condición y Formula Boleana

Código	Modo de	Cód	HC08	
Fuente	Direccionamiento	Opcode	Operando(s)	Ciclos
BLT opr	REL	91	rr	3



BMC - Bifurcación si la Máscara de Interrupción es 0

Operación: $PC \leftarrow (PC) + \$0002 + Rel$ Si I = 0

Descripción: Prueba el estado del bit I en el CCR y causa una bifurcación si I es cero (por ejemplo, si se habilitan las interrupciones). Véase la instrucción BRA para más detalles de la ejecución de la bifurcación.

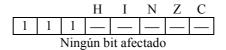
Códigos de condición y Formula Boleana

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Ciclos	
Fuente	Direccionamiento	Opcode		
BMC (rel)	REL	2C	rr	3

Prueba	Boole	Mnemónico	Opcode	Complem	Complementario		Comentario
						ción	
r > m	C + Z = 0	BHI	22	$R \le m$	BLS	23	Sin signo
$r \ge m$	C = 0	BHS/BCC	24	R < m	BLO/BCS	25	Sin signo
r = m	Z = 1	BEQ	27	R ≠ m	BNE	26	Sin signo
r≤ m	C + Z = 1	BLS	23	R > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	R≥m	BHS/BCC	24	Sin signo
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	r ≠ 0	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable			_
				=0			
Medio	H = 1	BHCS	29	No Medio	BHCC	28	Simple
Acarreo				Acarreo			
IRQ Pin Alto	_	BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre		BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria



BMI - Bifurcación si es Menor

Operación: $PC \leftarrow (PC) + \$0002 + Rel$ Si(N) = 1

Descripción: Prueba que el estado del bit N en el CCR y causa una bifurcación si N es 1. Véase la instrucción BRA para más detalles de la ejecución de la bifurcación.

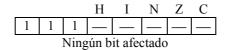
Códigos de condición y Formula Boleana

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Có	digo	Modo de	Códig	Ciclos	
Fu	ente	Direccionamiento	Opcode		
BMI ((rel)	REL	2B	rr	3

Prueba	Boole	Mnemónico	Opcode	Complementario		Bifurca	Comentario
						ción	
r > m	C + Z = 0	BHI	22	R ≤ m	BLS	23	Sin signo
$r \ge m$	C = 0	BHS/BCC	24	R < m	BLO/BCS	25	Sin signo
r = m	Z = 1	BEQ	27	R ≠ m	BNE	26	Sin signo
r≤ m	C + Z = 1	BLS	23	R > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	R≥m	BHS/BCC	24	Sin signo
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	r ≠ 0	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable			_
				= 0			
Medio	H = 1	BHCS	29	No Medio	BHCC	28	Simple
Acarreo				Acarreo			
IRQ Pin Alto	_	BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre		BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria



BMS - Bifurcación si la Máscara de Interrupción es 1

Operación: $PC \leftarrow (PC) + \$0002 + Rel$ Si (I) = 1

Descripción: Prueba el estado del bit I en el CCR y causa una bifurcación si I es 1 (por ejemplo, si las interrupciones son inválidas). Véase la instrucción BRA para más detalles de la ejecución de la bifurcación.

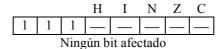
Códigos de condición y Formula Boleana

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Ciclos	
Fuente	Direccionamiento	Opcode Operando(s)		
BMS (rel)	REL	2D	rr	3

Prueba	Boole	Mnemónico	Opcode	Complementario		Bifurca	Comentario
						ción	
r > m	C + Z = 0	BHI	22	$R \leq m$	BLS	23	Sin signo
$r \ge m$	C = 0	BHS/BCC	24	$R \le m$	BLO/BCS	25	Sin signo
r = m	Z = 1	BEQ	27	R ≠ m	BNE	26	Sin signo
r≤ m	C + Z = 1	BLS	23	R > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	$R \ge m$	BHS/BCC	24	Sin signo
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	$R \neq 0$	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable			
				= 0			
Medio	H = 1	BHCS	29	No Medio	BHCC	28	Simple
Acarreo				Acarreo			
IRQ Pin Alto		BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre		BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria



BNE - Bifurcación si no es Igual

Operación: $PC \leftarrow (PC) + \$0002 + Rel$ Si(Z) = 0

Descripción: Prueba el estado del bit Z en el CCR y provoca una bifurcación si Z está a 0. Siguiendo una instrucción de comparación o substracción, la instrucción BEQ provocará una bifurcación si los argumentos no serán iguales. Véase la instrucción BRA para más detalles de la ejecución de la bifurcación.

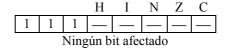
Códigos de condición y Formula Boleana

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Ciclos	
Fuente	Direccionamiento	Opcode Operando(s)		
BNE (rel)	REL	26	rr	3

Prueba	Boole	Mnemónico	Opcode	Complementario		Bifurca	Comentario
						ción	
r > m	C + Z = 0	BHI	22	$R \leq m$	BLS	23	Sin signo
$r \ge m$	C = 0	BHS/BCC	24	$R \le m$	BLO/BCS	25	Sin signo
r = m	Z = 1	BEQ	27	$R \neq m$	BNE	26	Sin signo
r≤ m	C + Z = 1	BLS	23	R > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	$R \ge m$	BHS/BCC	24	Sin signo
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	r ≠ 0	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable			
				=0			
Medio	H = 1	BHCS	29	No Medio	BHCC	28	Simple
Acarreo				Acarreo			
IRQ Pin Alto	_	BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre		BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria



BPL - Bifurcación si es Positivo

Operación: $PC \leftarrow (PC) + \$0002 + Rel$ Si(N) = 0

Descripción: Prueba el estado del bit N en el CCR y provoca una bifurcación si N está a 0. Véase la instrucción BRA para más detalles de la ejecución de la bifurcación.

Códigos de condición y Formula Boleana

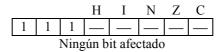
Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Máquina	Ciclos
Fuente	Direccionamiento	Opcode		
BPL (rel)	REL	2A	rr	3

Esta tabla es un resumen de todas las instrucciones de bifurcación.

Prueba	Boole	Mnemónico	Opcode	Complementario		Bifurca	Comentario
						ción	
r > m	C + Z = 0	BHI	22	$R \leq m$	BLS	23	Sin signo
$r \ge m$	C = 0	BHS/BCC	24	$R \le m$	BLO/BCS	25	Sin signo
r = m	Z = 1	BEQ	27	$R \neq m$	BNE	26	Sin signo
r≤ m	C + Z = 1	BLS	23	R > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	$R \ge m$	BHS/BCC	24	Sin signo
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	r ≠ 0	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable			
				=0			
Medio	H = 1	BHCS	29	No Medio	BHCC	28	Simple
Acarreo				Acarreo			
IRQ Pin Alto	_	BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre		BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria


BRA - Bifurcación Incondicional

Operación: $PC \leftarrow (PC) + \$0002 + Rel$

Descripción: Bifurcación incondicional a la dirección dada por la fórmula anterior, en qué 'Rel' es el desplazamiento relativo guardado como un número complemento a dos en el último byte de código máquina correspondiente a la instrucción de bifurcación. PC es la dirección del 'opcode' para la instrucción bifurcación.

El programa fuente especifica el destino de cualquier instrucción de bifurcación por su dirección absoluta o como un valor numérico o como un símbolo o expresión que puede ser evaluada numéricamente por el ensamblador. El ensamblador calcula la dirección relativa 'Rel' de la dirección absoluta y el valor actual de la posición del contador.

Códigos de condición y Formula Boleana

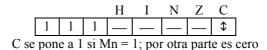
Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Máquina	Ciclos
Fuente	Direccionamiento	Opcode		
BRA (rel)	REL	20	rr	3

Esta tabla es un resumen de todas las instrucciones de bifurcación.

Prueba	Boole	Mnemónico	Opcode	Complementario		Bifurca	Comentario
						ción	
r > m	C + Z = 0	BHI	22	$R \le m$	BLS	23	Sin signo
$r \ge m$	C = 0	BHS/BCC	24	R < m	BLO/BCS	25	Sin signo
r = m	Z = 1	BEQ	27	R ≠ m	BNE	26	Sin signo
r≤ m	C + Z = 1	BLS	23	R > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	$R \ge m$	BHS/BCC	24	Sin signo
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	r ≠ 0	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable			
				=0			
Medio	H = 1	BHCS	29	No Medio	BHCC	28	Simple
Acarreo				Acarreo			_
IRQ Pin Alto	_	BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre		BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria


BRCLR n - Bifurcación si el Bit n es Cero

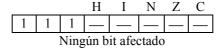
Operación: $PC \leftarrow (PC) + \$0003 + Rel$ Si el bit n de M = 0

Descripción: Prueba el bit n (N = 7, 6, 5...0) de la posición M y bifurca si el bit se pone a 0, M puede ser una posición de RAM o una dirección del registro de E/S en el área de memoria \$0000 a \$00FF (por ejemplo, modo de direccionamiento directo si está usado para especificar la dirección del operando).

El bit C es 1 para el estado de prueba de bit. Cuando se usa junto con una apropiada instrucción de rotación, BRCLR n mantiene un método fácil realizando sesiones de serie a paralelo.

Códigos de condición y Formula Boleana

Código Fuente	Modo de	Códi	Ciclos	
	Direccionamiento	Opcode	Operando(s)	
BRCLR 0,(opr)	DIR (bit 0)	01	dd rr	5
BRCLR 1,(opr)	DIR (bit 1)	03	dd rr	5
BRCLR 2,(opr)	DIR (bit 2)	05	dd rr	5
BRCLR 3,(opr)	DIR (bit 3)	07	dd rr	5
BRCLR 4,(opr)	DIR (bit 4)	09	dd rr	5
BRCLR 5,(opr)	DIR (bit 5)	0B	dd rr	5
BRCLR 6,(opr)	DIR (bit 6)	0D	dd rr	5
BRCLR 7,(opr)	DIR (bit 7)	0F	dd rr	5



BRN - Nunca Bifurcación

Operación: $PC \leftarrow (PC) + \$0002$

Descripción: Nunca hace bifurcación. En efecto, esta instrucción puede ser considerada como 2-bytes NOP (no operación) requiriendo tres ciclos para su ejecución. Esta inclusión en el juego de instrucciones es para mantener un complemento de la instrucción BRA. La instrucción es útil durante el programa de depuración para negar el efecto de otra instrucción de bifurcación sin perturbar el byte de desplazamiento.

Códigos de condición y Formula Boleana

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Máquina	Ciclos
Fuente	Direccionamiento	Opcode		
BRN (rel)	REL	21	rr	3

Esta tabla es un resumen de todas las instrucciones de bifurcación.

Prueba	Boole	Mnemónico	Opcode	Complementario		Bifurca	Comentario
						ción	
r > m	C + Z = 0	BHI	22	$R \leq m$	BLS	23	Sin signo
$r \ge m$	C = 0	BHS/BCC	24	$R \le m$	BLO/BCS	25	Sin signo
r = m	Z = 1	BEQ	27	$R \neq m$	BNE	26	Sin signo
r≤ m	C + Z = 1	BLS	23	R > m	BHI	22	Sin signo
r < m	C = 1	BLO/BCS	25	$R \ge m$	BHS/BCC	24	Sin signo
Acarreo	C = 1	BCS	25	Sin Acarreo	BCC	24	Simple
r = 0	Z = 1	BEQ	27	r ≠ 0	BNE	26	Simple
Negativo	N = 1	BMI	2B	Más	BPL	2A	Simple
I	I = 1	BMS	2D	I	BMC	2C	Simple
Enmascarable				Enmascarable			
				=0			
Medio	H = 1	BHCS	29	No Medio	BHCC	28	Simple
Acarreo				Acarreo			
IRQ Pin Alto	_	BIH	2F	IRQ Bajo	BIL	2E	Simple
Siempre		BRA	20	Nunca	BRN	21	Incondicional

r = registro (ACCA o X); m = operando memoria

BRSET n - Bifurcación si el Bit n es 1

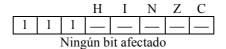
Operación: $PC \leftarrow (PC) + \$0003 + Rel$ Si el Bit n de M = 1

Descripción: Prueba el Bit n (n = 7, 6, 5, 0) de la posición M y bifurca si el bit está a 1. M puede ser cualquier posición de la RAM o dirección del registro de E/S en el área de memoria \$0000 a \$00FF (por ejemplo, el modo de direccionamiento directo se usa para especificar la dirección del operando). El Bit C se pone al estado del bit probado. Cuando se usó junto con una apropiada instrucción de rotación, BRSET n proporciona un método fácil para realizar sesiones de serie a paralelo.

Códigos de condición y Formula Boleana

				Η	I	N	Z	C	
	1	1	1	_	_			\$	
C se p	one	a 1 s	si M	n = 1	; por	el co	ntra	rio es	s cero

Código Fuente	Modo de	Códi	Ciclos	
	Direccionamiento	Opcode	Operando	(s)
BRSET 0,(opr)	DIR (bit 0)	00	dd 1	r 5
BRSET 1,(opr)	DIR (bit 1)	02	dd 1	r 5
BRSET 2,(opr)	DIR (bit 2)	04	dd 1	т 5
BRSET 3,(opr)	DIR (bit 3)	06	dd 1	r 5
BRSET 4,(opr)	DIR (bit 4)	08	dd 1	r 5
BRSET 5,(opr)	DIR (bit 5)	0C	dd 1	т 5
BRSET 6,(opr)	DIR (bit 6)	0E	dd 1	т 5
BRCLR 7,(opr)	DIR (bit 7)	0F	dd 1	r 5



BSET n - Pone a 1 el Bit en la Memoria

Operación: Mn ← 1

Descripción: Pone el Bit n (n =7,6,5 ...0) en la posición M. Todos los otros bits en M son afectados. M puede ser cualquier posición de la RAM o dirección del registro de E/S en el área de memoria de \$0000 a \$00FF (por ejemplo, el modo de direccionamiento directo se usa para especificar la dirección del operando).

Códigos de condición y Formula Boleana

Código Fuente	Modo de	Código	Ciclos	
	Direccionamiento	Opcode	Operando(s)	
BSET 0,(opr)	DIR (bit 0)	10	dd	5
BSET 1,(opr)	DIR (bit 1)	12	dd	5
BSET 2,(opr)	DIR (bit 2)	14	dd	5
BSET 3,(opr)	DIR (bit 3)	16	dd	5
BSET 4,(opr)	DIR (bit 4)	18	dd	5
BSET 5,(opr)	DIR (bit 5)	1A	dd	5
BSET 6,(opr)	DIR (bit 6)	1C	dd	5
BCLR 7,(opr)	DIR (bit 7)	1E	dd	5

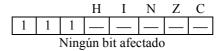
BSR - Bifurcación a Subrutina

Operación $PC \leftarrow (PC) + \$0002$

 $\downarrow (PCL); SP \leftarrow (SP) - \0001 $\downarrow (PCL); SP \leftarrow (SP) - \0001

 $PC \leftarrow (PC) + Rel$

Avanza el PC para volVéase a la dirección


Guarda el orden más bajo hacia la pila Guarda el orden más alto hacia la pila

Carga el PC con la dirección de inicio de la

subrutina pedida

Descripción: El contador de programa es incrementado a través de dos direcciones del 'opcode', por ejemplo, apunta al 'opcode' de la siguiente instrucción que quiere ser la dirección de retorno. El byte menos significativo de los contenidos de contador de programa (dirección de retorno de orden más bajo) se pone en la pila. El puntero de pila entonces es decrementado por uno. El byte más significativo de los contenidos del contador de programa (dirección de retorno de orden más alto) se pone en la pila. El puntero de pila entonces es decrementado por uno. Entonces ocurre una bifurcación a la posición especificada por el desplazamiento de la bifurcación. Véase la instrucción BRA para más detalles de la ejecución de la bifurcación.

Códigos de condición y Formula Boleana

Código Fuente	Modo de	Código	Ciclos	
	Direccionamiento	Opcode Operando(s)		
BSR (rel)	REL	AD	rr	6

CBEQ - Compara y Bifurca si es Igual

Operación: (A) - (M);

 $PC \leftarrow (PC) + \$0003 + rel$ si el resultado es \\$00

o para modo IX+:

(A) - (M);

(B) $PC \leftarrow (PC) + \$0002 + rel$ si el resultado es \$00

o para modo SP1:

 $PC \leftarrow (PC) + \$0004 + rel$ si el resultado es \\$00

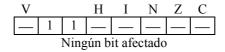
Descripción: CBEQ compara el operando con el acumulador (A) y causa una bifurcación si el resultado es cero. La instrucción CBEQ combina CMP y BEQ para rutinas de 'lookup table' más rápidas.

CBEQ IX+ compara el operando direccionado por H:X al acumulador A y causa una bifurcación si el resultado es cero. Entonces, H:X se incrementa sin tener en cuenta si se toma una bifurcación.

CBEQ IX1+ opera de la misma manera, sólo que con un desplazamiento de 8 bits, se agrega a la dirección eficaz del operando.

Códigos de condición y Formula Boleana

Código Fuente	Modo de	Código	HC08		
	Direccionamiento	Opcode	Opera	ndo(s)	Ciclos
CBEQ opr	DIR	31	dd	rr	5
CBEQA #opr, rel	IMM	41	ii	rr	4
CBEQX #opr, rel	IMM	51	ii	rr	4
CBEQ X+, rel	IX+	71	rr		4
CBEQ opr, X+, rel	IX1+	61	ff	rr	5
CBEQ opr, SP, rel	SP1	9E61	ff	rr	6


CBEQA - Compara A con Inmediato, Bifurca si es Igual

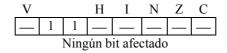
Operación: (A) - (M);

 $PC \leftarrow (PC) + \$0003 + rel$ si el resultado es \$00

Descripción: CBEQ compara un operando inmediato con el acumulador (A) y causa una bifurcación si el resultado es cero. La instrucción CBEQA combina CPX y BEQ para rutinas de 'lookup table' más rápidas.

Códigos de condición y Formula Boleana

Código Fuente	Modo de	Código	na	HC08	
	Direccionamiento	Opcode	Opera	ndo(s)	Ciclos
CBEQ opr	DIR	31	dd	rr	5
CBEQA #opr, rel	IMM	41	ii	rr	4
CBEQX #opr, rel	IMM	51	ii	rr	4
CBEQ X+, rel	IX+	71	rr		4
CBEQ opr, X+, rel	IX1+	61	ff	rr	5
CBEQ opr, SP, rel	SP1	9E61	ff	rr	5


CBEQX - Compara X con Inmediato, Bifurca si es Igual

Operación: (X) - (M);

 $PC \leftarrow (PC) + \$0003 + rel$ si el resultado es \$00

Descripción: CBEQX compara un operando inmediato con la parte baja del registro de índice (X) y causa una bifurcación si el resultado es cero. La instrucción CBEQX combina CMX y BEQ para el control de contador de lazos más rápidos.

Códigos de condición y Formula Boleana

Código Fuente	Modo de	Código	na	HC08	
	Direccionamiento	Opcode	Opera	ndo(s)	Ciclos
CBEQ opr	DIR	31	dd	rr	5
CBEQA #opr, rel	IMM	41	ii	rr	4
CBEQX #opr, rel	IMM	51	ii	rr	4
CBEQ X+, rel	IX+	71	rr		4
CBEQ opr, X+, rel	IX1+	61	ff	rr	5
CBEQ opr, SP, rel	SP1	91	ff	rr	5

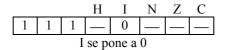
CLC - Pone a Cero el Bit de Acarreo

Operación: Bit $C \leftarrow 0$

Descripción: Pone a cero el bit C en el CCR. La instrucción CLC puede ser usada para preparar el bit C antes de una instrucción de desplazamiento o rotación que involucre al Bit C.

Códigos de condición y Formula Boleana

Código Fuente	Modo de Código Máquina		Código Máquina	
	Direccionamiento	Opcode	Operando(s)	
CLC	INH	98		2



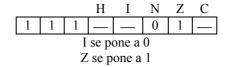
CLI - Pone a Cero el Bit de Máscara de Interrupción

Operación: Bit $I \leftarrow 0$

Descripción: Pone a cero el bit de máscara de interrupción en el CCR. Cuando el bit I se pone a cero, se habilitan las interrupciones. Hay un retraso de un ciclo de E-reloj en el mecanismo de poner a cero para el bit I, por si las interrupciones fueron previamente deshabilitadas, la siguiente instrucción después de una instrucción CLI siempre se ejecutará, aun cuando había una interrupción anterior pendiente a la ejecución de la instrucción CLI.

Códigos de condición y Formula Boleana

Código Fuente	Modo de	Código Máquina		Ciclos
	Direccionamiento	Opcode	Operando(s)	
CLI	INH	9A		2



CLR - Pone a Cero

Operación: $ACCA \leftarrow \$00$ o: $M \leftarrow \$00$ o: $X \leftarrow \$00$

Descripción: Los contenidos de ACCA, M o X, se reemplazan con Ceros.

Códigos de condición y Formula Boleana

Código Fuente	Modo de Código Máquina		Ciclos	
	Direccionamiento	Opcode	Operando(s)	
CLRA	INH (A)	4F		3
CLRX	INH (X)	5F		3
CLR (opr)	DIR	3F	dd	5
CLR ,X	IX	7F		5
CLR (opr),X	IX1	6F	ff	6

CLRH - Borra la parte alta del Registro de Índice (H)

Operación: H ← \$00

Descripción: Los contenidos de la parte alta del registro de índice (H) se reemplaza por ceros.

Códigos de condición y Formula Boleana

Se pone a 1 el bit Z (cero) y se pone a 0 el bit N y V.

Código Fuente	Modo de Direccionamiento	Código	Máquina	HC08 Ciclos
	Direccionamiento	Opcode	Operando(s)	Cicios
CLRH	INH (H)	8C		1
CLR opr, SP	SP1	9E6F	rr	4

CMP - Compara el Acumulador con la Memoria

Operación: (ACCA) – (M)

Descripción: Compara los contenidos de ACCA con los contenidos de M y pone a 1 el código de condición que se puede usar para la bifurcación condicional aritmética y lógica. Los contenidos de ACCA y de M son inalterados.

Códigos de condición y Formula Boleana

			Η	I	N	Z	C
1	1	1	_		\$	\$	\$

N R7

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

Z $\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$

Se pone a 1 si todos los bits del resultado se ponen a 0; de lo contrario se pone a 0.

C $A7 \bullet M7 + M7 \bullet \overline{R7} + \overline{R7} \bullet A\overline{7}$

Se pone a 1 si el valor absoluto de los contenidos de memoria es mayor que el valor absoluto del acumulador; de lo contrario se pone a 0.

Código	Modo de	Cód	Código Máquina		
Fuente	Direccionamiento	Opcode	Operando(s)		
CMP (opr)	IMM	A1	ii		2
CMP (opr)	DIR	B1	dd		3
CMP (opr)	EXT	C1	hh	11	4
CMP ,X	IX	F1			3
CMP (opr),X	IX1	E1	ff		4
CMP (opr),X	IX2	D1	ee	ff	5

COM - Complemento

Operación:
$$ACCA \leftarrow (ACCA) = \$FF - (ACCA)$$
 o: $M \leftarrow (M) = \$FF - (M)$ o: $X \leftarrow X = \$FF - (X)$

Descripción: Reemplaza los contenidos de ACCA, X o M con su complemento a uno. (Cada bit de los contenidos de ACCA, X o M se reemplazan con el complemento de ese Bit.)

Códigos de condición y Formula Boleana

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

Z
$$\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$$

Se pone a 1 si el resultado es \$00; de lo contrario se pone a 0.

C Se pone a 1

Código	Modo de	Código	Máquina	Ciclos
Fuente	Direccionamiento	Opcode	Operando(s)	
COMA	INH (A)	43		3
COMX	INH (X)	53		3
COM (opr)	DIR	33	dd	5
COM ,X	IX	73		5
COM (opr),X	IX1	63	ff	6

CPHX - Compara el Registro de Índice con la Memoria

Operación: (H:X) - (M:M + \$0001)

Descripción: CPHX compara el registro de índice (H:X) con el valor en memoria de 16 bits y pone a 1 de acuerdo con el registro de código de condición.

Códigos de condición y Formula Boleana

V: $\overline{M15} \bullet \overline{R15} \bullet \overline{H7} \bullet \overline{M15} \bullet \overline{R15}$

Se pone a 1 si desbordamiento complemento a dos, ha resultado de la operación; de lo contrario se pone a 0.

N: R15

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

z:
$$\overline{R15} \cdot \overline{R14} \cdot \overline{R13} \cdot \overline{R12} \cdot \overline{R11} \cdot \overline{R10} \cdot \overline{R9} \cdot \overline{R8} \cdot \overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot$$

 $\overline{R1}$

Se pone a 1 si el resultado es \$0000; de lo contrario se pone a 0.

C:
$$\overline{H7}$$
 M15 | M15 • R15 | $\overline{R15}$ • $\overline{H7}$

Se pone a 1 si el valor absoluto del contenido de la memoria es mayor que el valor absoluto del registro de índice; de lo contrario se pone a 0.

Código Fuente	Modo de	Código	Máquina	HC08
	Direccionamiento	Opcode	Operando(s	Ciclos
CPHX #opr	IMM	65	ii ii + 1	3
CPHX opr	DIR	75	dd	4

CPX - Compara el Registro de Índice con la Memoria

Operación: (X) - (M)

Descripción: Compara los contenidos del registro de índice con los contenidos de la memoria y pone a 1 el código de condición que se pueden usar para la bifurcación aritmética y lógica. Los contenidos de ACCA y M están inalterados.

Códigos de condición y Formula Boleana

N *R7*

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

Z $\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$

Se pone a 1 si todos los bits del resultado se ponen a 0; de lo contrario se pone a 0.

C $\overline{IX7} \bullet M7 + M7 \bullet R7 + R7 \bullet \overline{IX7}$

Se pone a 1 si el valor absoluto de los contenidos de memoria es mayor que el valor absoluto del registro de índice; de lo contrario se pone a 0.

Código	Modo de	Cód	Código Máquina			
Fuente	Direccionamiento	Opcode	Operar	ıdo(s)		
CPX (opr)	IMM	A3	ii		2	
CPX (opr)	DIR	В3	dd		3	
CPX (opr)	EXT	C3	hh	11	4	
CPX ,X	IX	F3			3	
CPX (opr),X	IX1	E3	ff		4	
CPX (opr),X	IX2	D3	ee	ff	5	

DAA - Ajuste Decimal del Acumulador

Operación: $(A)_{10}$

Descripción: Ajusta el contenido del acumulador (A) y el estado del bit de acarreo del CCR, después de una operación BCD (decimal codificado en binario). Para que haya una suma correcta en BCD y una exacta indicación del acarreo. El estado del bit de medio acarreo del CCR afecta el funcionamiento. (Véase la tabla de Función del DAA para detalles de funcionamiento.)

Códigos de condición y Formula Boleana

V			Η	I	N	Z	C
U	1	1	_		1	1	1

V: U

Indefinido

N: R7

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

z: $\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$

Se pone a 1 si el resultado es \$0000; de lo contrario se pone a 0.

C: Véase la tabla de Función de DAA.

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código Fuente	Modo de	Código Máquina		HC08
	Direccionamiento	Opcode	Operando(s)	Ciclos
DAA	INH	72		2

Ajuste decimal del Acumulador: La tabla de Función del DAA, muestra el funcionamiento de la instrucción DAA para todas combinaciones legales de los operandos de entrada. Las columnas de la 1 a la 4 representan los resultados de los funcionamientos de la instrucción ADC o ADD, en operandos BCD. El factor de corrección en columna 5 se añade al acumulador para restaurar el resultado de un funcionamiento en dos operandos BCD a un valor válido BCD y pone a 1 o a 0 el bit C. Todos los valores están en hexadecimal.

1	2	3	4	5	6
Valor inicial	Valor de	Valor inicial	Valor de	Factor de	Valor corregido
del bit C	A[7:4]	del bit H	A[3:0]	corrección	del bit C
0	0-9	0	0-9	00	0
0	0-8	0	A-F	06	0
0	0-9	1	0-3	06	0
0	A-F	0	0-9	60	1
0	9-F	0	A-F	66	1
0	A-F	1	0-3	66	1
1	0-2	0	0-9	60	1
1	0-2	0	A-F	66	1
1	0-3	1	0-3	66	1

DBNZ - Decrementa y Bifurca si no es Cero

Operación: $A \leftarrow (A) - \$0001$

0

 $M \leftarrow (M) - \$0001$

0

 $X \leftarrow (X) - \$0001;$

 $PC \leftarrow (PC) + \$0003 + rel$ si el resultado es 0, para DBNZ DIR o IX1

 $PC \leftarrow (PC) + \$0002 + rel$ si el resultado es 0, para DBNZA, DBNZX, o IX

 $PC \leftarrow (PC) + \$0004 + rel$ si el resultado es 0, para DBNZ SP1

Descripción: Substrae uno del contenido de A, X o M; entonces bifurca usando el desplazamiento relativo, si el resultado de la substracción no es cero.

Códigos de condición y Formula Boleana

Código Fuente	Modo de	Código	HC08	
	Direccionamiento	Opcode	Operando(s)	Ciclos
DBNZ opr	DIR	3B	dd rr	5
DBNZA opr	INH	4B	rr	3
DBNZX opr	INH	5B	rr	3
DBNZ opr	IX	7B	rr	4
DBNZ opr	IX1	6B	rr rr	5
DBNZ opr	SP1	9E6B	rr rr	6

DEC - Decrementa

Operación:
$$ACCA \leftarrow (ACCA) - \$01$$
 o: $M \leftarrow (M) - \$01$

o:
$$X \leftarrow (X) - \$01$$

Descripción: Substrae uno de los contenidos de ACCA, X o M. Los bits N y Z en el CCR se ponen a 1 o 0 según el resultado de esta operación. El bit C en el CCR no es afectado; por consiguiente, las únicas instrucciones de bifurcación que son útiles siguiendo a una instrucción DEC son BEQ, BNE, BPL y BMI.

Códigos de condición y Formula Boleana

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

Z
$$\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$$

Se pone a 1 si todos los bits del resultado se ponen a 0; de lo contrario se pone a 0.

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código Máquina		Ciclos		
Fuente	Direccionamiento	Opcode Operar		Opcode Opera		
DECA	IMM	4A		3		
DECX	DIR	5A		3		
DECA (opr)	EXT	3A	dd	5		
DEC ,X	IX	7A		5		
DEC (opr),X	IX1	6A	ff	6		

DEX es reconocido por el ensamblador com una equivalencia de DECX

DIV - Divide

Operación: $A \leftarrow (H:A) \div (X)$ $H \leftarrow Resto$

Descripción: Divide un dividendo de 16 bits sin signo contenido, en los registros encadenados, H (registro de índice alto) y (A) el acumulador, por un divisor de 8 bits contenido en el registro X (registro de índice bajo). El cociente se pone en el acumulador (A) y el divisor queda inalterado.

Un desbordamiento (cociente > \$FF) o divido por cero, pone a 1 el bit C; el cociente y el resto son indeterminados.

Códigos de condición y Formula Boleana

Z:
$$\overline{M7} \bullet \overline{M6} \bullet \overline{M5} \bullet \overline{M4} \bullet \overline{M3} \bullet \overline{M2} \bullet \overline{M1} \bullet \overline{M0}$$

Se pone a 1 si el resultado (cociente) es \$00; de lo contrario se pone a 0.

C: Se pone a 1 si fue intentado un divido por cero o si ocurre un desbordamiento; de lo contrario se pone a 0.

Código Fuente	Modo de	Código Máquina		HC08
	Direccionamiento	Opcode Operando(s)		Ciclos
DIV	INH	52		7

EOR - OR-Exclusiva de la Memoria con el Acumulador

Operación: $ACCA \leftarrow (ACCA) \oplus (M)$

Descripción: Realiza una OR-Exclusiva lógico entre los contenidos de ACCA y M, pone el resultado en ACCA. (Cada bit de ACCA después de una operación será una OR-Exclusiva lógico de los bits correspondientes de M y ACCA antes de la operación.)

Códigos de condición y Formula Boleana

			Η	I	N	Z	C
1	1	1			\$	\$	

N R7

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

Z $\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$

Se pone a 1 si todos los bits del resultado se ponen a 0; de lo contrario se pone a 0.

Código	Modo de	Código Máquina			Ciclos
Fuente	Direccionamiento	Opcode	opcode Operando(s)		
EOR (opr)	IMM	A8	ii		2
EOR (opr)	DIR	B8	dd		3
EOR (opr)	EXT	C8	hh	11	4
EOR ,X	IX	F8			3
EOR (opr),X	IX1	E8	ff		4
EOR (opr),X	IX2	D8	ee	ff	5

INC - Incrementa

Operación: $ACCA \leftarrow (ACCA) + \01 o: $M \leftarrow (M) + \$01$

o: $X \leftarrow (X) + \$01$

Descripción: Suma uno a los contenidos de ACCA, X o M. Los bits N y Z en el CCR son puestos a 1 o a 0 según los resultados de esta operación. El bit C en el CCR no es afectado; por consiguiente, las únicas instrucciones de bifurcación que son útiles a instrucción INC son BEQ, BNE, BPL y BMI.

Códigos de condición y Formula Boleana

N *R7*

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

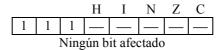
Z $\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$

Se pone a 1 si todos los bits del resultado se ponen a 0; de lo contrario se pone a 0.

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Códig	o Máquina	Ciclos
Fuente	Direccionamiento	Opcode Operando(s)		
INCA	IMM	4C	-	3
INCX	DIR	5C		3
INC (opr)	EXT	3C	dd	5
INC ,X	IX	7C		5
INC (opr),X	IX1	6C	ff	6

INX es reconocido por el ensamblador con una equivalencia a INCX



JMP - Salto

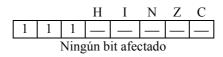
Operación: PC ← Dirección Efectiva

Descripción: Ocurre un salto a la instrucción guardada a la dirección efectiva. La dirección efectiva se obtiene de acuerdo con las reglas del modo de direccionamiento Extendido, Directo o Indexado.

Códigos de condición y Formula Boleana

Código	Modo de	Cód	Ciclos		
Fuente	Direccionamiento	Opcode	pcode Operando(s)		
JMP (opr)	DIR	BC	dd		2
JMP (opr)	EXT	CC	hh	11	3
JMP ,X	IX	FC			2
JMP (opr),X	IX1	EC	ff		3
JMP (opr),X	IX2	DC	ee	ff	4

JSR - Salto a Subrutina


Operación: $PC \leftarrow (PC) + n$ n = 1, 2, 3 dependiendo del modo de direccionamiento

↓ (PCL); SP ← (SP) – \$0001
 Pone la parte baja de la dirección de retorno a la pila
 ↓ (PCL); SP ← (SP) – \$0001
 Pone la parte alta de la dirección de retorno a la pila
 PC ← Dirección Efectiva
 Carga el PC con dirección de inicio de la subrutina

pedida

Descripción: El contador de programa es incrementado por n que apunta al opcode de la instrucción que sigue a la instrucción JSR (n = 1, 2 o 3 dependiendo del modo de direccionamiento). Entonces se Pone el PC hacia la pila, ocho bits de una vez, primero el byte menos significativo. Los bits sin usar en el contador de programa, el byte alto, se guarda como unos en la pila. El puntero de pila apunta a la siguiente posición vacía en la pila. Ocurre un salto a la instrucción guardada a la dirección efectiva. La dirección efectiva se obtiene según las reglas de los modos de direccionamiento Extendido, Directo o Indexado.

Códigos de condición y Formula Boleana

Código	Modo de	Código Máquina			Ciclos
Fuente	Direccionamiento	Opcode Operando(s)			
JSR (opr)	DIR	BD	dd		5
JSR (opr)	EXT	CD	hh	11	6
JSR ,X	IX	FD			5
JSR (opr),X	IX1	ED	ff		6
JSR (opr),X	IX2	DD	ee	Ff	7

LDA - Carga el Acumulador desde la Memoria

Operación: $ACCA \leftarrow (M)$

Descripción: Carga los contenidos de la memoria en el acumulador. El código de condición se pone a 1 de acuerdo los datos.

Códigos de condición y Formula Boleana

			Η	I	N	Z	C	
1	1	1			\$	\$		1

N *R7*

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

Z $\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$

Se pone a 1 si todos los bits del resultado se ponen a 0; de lo contrario se pone a 0.

Código	S .		Código Máquina			
Fuente	Direccionamiento	Opcode	Opera	ndo(s)		
LDA (opr)	IMM	A6	ii		2	
LDA (opr)	DIR	В6	dd		3	
LDA (opr)	EXT	C6	hh	11	4	
LDA ,X	IX	F6			3	
LDA (opr),X	IX1	E6	ff		4	
LDA (opr),X	IX2	D6	ee	ff	5	

LDHX - Carga el Registro de Índice con la Memoria

Operación: $H:X \leftarrow (M:M + \$0001)$

Descripción: Carga los contenidos de la posición de memoria especificada en el registro de índice (H:X). Los códigos de condición se ponen a 1 de acuerdo con el dato.

Códigos de condición y Formula Boleana

V: (

Se pone a 0.

N: R15

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

$$\underline{\mathbf{z}} \colon \quad \overline{\mathbf{R}15} \bullet \overline{\mathbf{R}14} \bullet \overline{\mathbf{R}13} \bullet \overline{\mathbf{R}12} \bullet \overline{\mathbf{R}11} \bullet \overline{\mathbf{R}10} \bullet \overline{\mathbf{R}9} \bullet \overline{\mathbf{R}8} \bullet \overline{\mathbf{R}7} \bullet \overline{\mathbf{R}6} \bullet \overline{\mathbf{R}5} \bullet \overline{\mathbf{R}4} \bullet \overline{\mathbf{R}3} \bullet \overline{\mathbf{R}2} \bullet \overline{\mathbf{R}2} \bullet \overline{\mathbf{R}10} \bullet$$

Se pone a 1 si el resultado es \$0000; de lo contrario se pone a 0.

Código Fuente	Modo de	Código	Máquina	HC08 Ciclos
	Direccionamiento	Opcode	Operando(s)	Cicios
LDHX #opr	IMM	45	ii ii	3
LDHX opr	DIR	55	dd	4

LDX - Carga el Registro de Índice desde la Memoria

Operación: $X \leftarrow (M)$

Descripción: Carga los contenidos de la posición de memoria especificada en el registro de índice. Los códigos de condición son puestos a 1 de acuerdo a los datos.

Códigos de condición y Formula Boleana

			Η	I	N	Z	C
1	1	1			\$	\$	

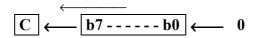
N *R7*

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

Z $\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$

Se pone a 1 si todos los bits del resultado se ponen a 0; de lo contrario se pone a 0.

Código	Modo de	Código Máquina		a	Ciclos
Fuente	Direccionamiento	Opcode	Opcode Operando(s)		
LDX (opr)	IMM	AE	ii		2
LDX (opr)	DIR	BE	dd		3
LDX (opr)	EXT	CE	hh	11	4
LDX ,X	IX	FE			3
LDX (opr),X	IX1	EE	ff		4
LDX (opr),X	IX2	DE	ee	ff	5



LSL - Desplazamiento Lógico a la Izquierda

(lo mismo que la instrucción ASL)

Operación:

Descripción: Desplaza todos los bits de ACCA, X o M un lugar a la izquierda. El bit 0 está cargado con 0. El bit C en el CCR está cargado desde el bit más significativo de ACCA, X o M.

Códigos de condición y Formula Boleana

N R7

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

Z
$$\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$$

Se pone a 1 si todos los bits del resultado se ponen a 0; de lo contrario se pone a 0.

C b'

Se pone a 1 si antes del desplazamiento el valor MSB del valor desplazado era 1; de lo contrario se pone a 0.

Código Fuente	Modo de	Código Máquina		Ciclos
	Direccionamiento	Opcode	Operando(s)	
LSLA	INH (A)	48		3
LSLX	INH (X)	58		3
LSL (opr)	DIR	38	dd	5
LSL	IX	78		5
LSL (opr),X	IX1	68	ff	6

LSR - Desplazamiento Lógico a la Derecha

Operación

$$0 \longrightarrow \boxed{b7 - \cdots - b0} \longrightarrow \boxed{C}$$

Descripción: Cambia todos los bits de ACCA, X o M un lugar a la derecha. El bit 7 está cargado con 0. El bit 0 se desplaza al bit C.

Códigos de condición y Formula Boleana

Z
$$\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$$

Se pone a 1 si todos los bits del resultado se ponen a 0; de lo contrario se pone a 0.

C b(

0.

Se pone a 1 si antes del desplazamiento, el valor LSB de ACCA, X o M era 1; de lo contrario se pone a

Código	Modo de	Código Máquina		Ciclos
Fuente	Direccionamiento	Opcode	Operando(s)	
LSRA	INH (A)	44		3
LSRX	INH (X)	54		3
LSR (opr)	DIR	34	dd	5
LSR ,X	IX	74		5
LSR (opr),X	IX1	64	ff	6

MOV - Mueve

Operación: (M)destino $\leftarrow (M)$ fuente

Descripción: Mueve un byte de datos desde una dirección fuente a la dirección destino. El dato se examina cuando se mueve y los códigos de condición se ponen a 1. El dato fuente no cambia. El acumulador no es afectado.

Hay cuatro modos de direccionamiento para la instrucción MOV:

- 1) IMD mueve un byte inmediato a una posición de memoria directa.
- 2) DD mueve un byte de la posición directa a otra posición directa.
- 3) IX+D mueve un byte de una posición direccionada por el registro de índice (H:X) a una posición directa. H:X se incrementa después del movimiento.
- 4) DIX+ mueve un byte de una posición directa a una dirección por H:X. H:X se incrementa después del movimiento.

Códigos de condición y Formula Boleana

V			Η	I	N	Z	C
0	1	1	_	_	1	1	

V: (

Se pone a 0.

N: R7

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

Se pone a 1 si el resultado es \$00; de lo contrario se pone a 0.

Código Fuente	Modo de	Código	Código Máquina		
	Direccionamiento	Opcode	Operando(s)	Ciclos	
MOV opr	IMD	6E	ii dd	4	
MOV opr	DD	4E	dd dd	5	
MOV opr	IX + D	7E	dd	4	
MOV opr	DIX+	5E	dd	4	

MUL - Multiplicación Sin Signo

Operación: $X:A \leftarrow X \times A$

Descripción: Multiplica los ocho bits del registro de índice por los ocho bits del acumulador para obtener un número de 16-bits sin signo, encadenando el registro de índice y el acumulador. Después de la operación, X contiene los 8 bits más altos del resultado de 16-bits.

Códigos de condición y Formula Boleana

			Н	I	N	Z	С
1	1	1	0	_	—	_	0

H Se pone a 0

C Se pone a 0

Código	Modo de	Código Máquina		Ciclos
Fuente	Direccionamiento	Opcode	Operando(s)	
MUL	INH	42		3

NEG - Negado

Operación: $ACCA \leftarrow -(ACCA);$ o: $X \leftarrow -(X);$ o: $M \leftarrow -(M)$

Descripción: Reemplaza los contenidos de ACCA, X o M con su complemento a dos. El valor \$80 queda inalterado.

Códigos de condición y Formula Boleana

N *R7*

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

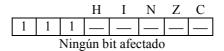
Z $\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$

Se pone a 1 si el resultado es \$00; de lo contrario se pone a 0.

R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0

Se pone a 1 si hay un acarreo por substracción implícita de 0; se pone a cero por otro lado. El bit C se pondrá a 1 en todos los casos excepto cuando los contenidos de ACCA, X o M (anterior a la operación NEG) es \$00.

Código	Modo de	Código	Código Máquina	
Fuente	Direccionamiento	Opcode	Operando(s)	
NEGA	INH (A)	40		3
NEGX	INH (X)	50		3
NEG (opr)	DIR	30	dd	5
NEG ,X	IX	70		5
NEG (opr),X	IX1	60	ff	6

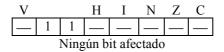


NOP - No Operación

Descripción: Ésta es una instrucción de un solo byte que causa al contador del programa que sea incrementado. Ningún otro registro es afectado.

Códigos de condición y Formula Boleana

Código	Modo de	Código Máquina		Ciclos
Fuente	Direccionamiento	Opcode	Operando(s)	
NOP	INH	9D		2


NSA - Cambia los "nibbles" del Acumulador

Nibbles = 4 bits

Operación: $A \leftarrow (A[3:0]:A[7:4])$

Descripción: Cambia los 4 bits ("nibbles") más altos y más bajos del acumulador. La instrucción NSA se usa para el almacenamiento más eficaz y el uso de los operandos del decimal codificado en binario.

Códigos de condición y Formula Boleana

Código Fuente	Modo de	Código	HC08	
	Direccionamiento	Opcode	Operando(s)	Ciclos
NSA	INH	62		3

ORA - OR-Inclusiva

Operación: $ACCA \leftarrow (ACCA) + (M)$

Descripción: Realiza una OR-Inclusiva lógico entre los contenidos de ACCA y M, pone el resultado en ACCA. Cada bit de ACCA, después de la operación, será una OR-Inclusiva lógico de los bits correspondientes de M y ACCA antes de la operación.

Códigos de condición y Formula Boleana

_				Η	I	N	Z	C	
	1	1	1			\$	\$	\$	l

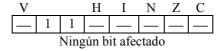
N R7

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

Z $\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$

Se pone a 1 si el resultado es \$00; de lo contrario se pone a 0.

Código	Modo de	Códi	Ciclos		
Fuente	Direccionamiento	Opcode	Opera	ndo(s)	
ORA (opr)	IMM	AA	ii		2
ORA (opr)	DIR	BA	dd		3
ORA (opr)	EXT	CA	hh	11	4
ORA ,X	IX	FA			3
ORA (opr),X	IX1	EA	ff		4
ORA (opr),X	IX2	DA	ee	ff	5



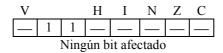
PSHA - Pone el Acumulador en la Pila

Operación: \downarrow (A), SP \leftarrow (SP) - \$0001

Descripción: Los contenidos del acumulador (A) se ponen en la pila ('stack') en la dirección contenida en el puntero de pila (SP). Entonces el puntero de pila es decrementado para apuntar a la siguiente posición disponible en la pila. Los contenidos del acumulador permanecen inalterados.

Códigos de condición y Formula Boleana

Código Modo de		Cód	Código Máquina		
Fuente	Direccionamiento	Opcode	Operando(s)	Ciclos	
PSHA	INH	87		2	



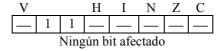
PSHH - Pone la parte alta del Registro Índice (H) en la Pila

Operación: \downarrow (H), SP \leftarrow (SP) - \$0001

Descripción: Los contenidos de H se ponen en la pila ('stack') en la dirección contenida en el puntero de pila (SP). Entonces el puntero de pila es decrementado para apuntar a la siguiente posición disponible en la pila. Los contenidos de H permanecen inalterados.

Códigos de condición y Formula Boleana

Código Modo de		Cód	Código Máquina		
ruente	uente Direccionamiento		Operando(s)	Ciclos	
PSHH	INH	8B		2	



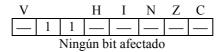
PSHX - Pone la parte baja del Registro Índice (X) en la Pila

Operación: \downarrow (X), SP \leftarrow (SP) - \$0001

Descripción: Los contenidos de X se ponen en la pila ('stack') en la dirección contenida en el puntero de pila (SP). Entonces el puntero de pila es decrementado para apuntar a la siguiente posición disponible en la pila. Los contenidos de H permanecen inalterados.

Códigos de condición y Formula Boleana

Código Modo de		Cód	igo Máquina	HC08
Fuente	Direccionamiento	Opcode	Operando(s)	Ciclos
PSHX	INH	89		2



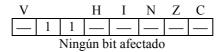
PULA - Saca el Acumulador de la Pila

Operación: $SP \leftarrow (SP + \$0001); \uparrow(A)$

Descripción: El puntero de pila (SP) es incrementado a la dirección del último operando en la pila ('stack'). Entonces el acumulador (A) es cargado con los contenidos de la dirección apuntada por el SP.

Códigos de condición y Formula Boleana

Código	Modo de	Código Máquina		HC08
Fuente	Direccionamiento	Opcode	Operando(s)	Ciclos
PULA	INH	86		2



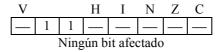
PULH - Saca la parte alta del Registro Índice (H) de la Pila

Operación: $SP \leftarrow (SP + \$0001); \uparrow (H)$

Descripción: El puntero de pila (SP) es incrementado a la dirección del último operando en la pila. Entonces H es cargado con los contenidos de la dirección apuntada por el puntero de pila SP.

Códigos de condición y Formula Boleana

Código	Modo de	Cód	Código Máquina	
Fuente	Direccionamiento	Opcode	Operando(s)	Ciclos
PULH	INH	8A		2

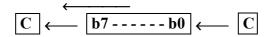


PULX - Saca la parte baja del Registro Índice (H) de la Pila

Operación: $SP \leftarrow (SP + \$0001); \uparrow (X)$

Descripción: El puntero de pila (SP) es incrementado a la dirección del último operando en la pila. Entonces X es cargado con los contenidos de la dirección apuntada por el puntero de pila SP.

Códigos de condición y Formula Boleana


Código	Modo de	Código Máquina		HC08
Fuente	Direccionamiento	Opcode	Operando(s)	Ciclos
PULX	INH	88		2

ROL - Rotación a la Izquierda por Acarreo

Operación:

Descripción: Desplaza todos los bits de ACCA, X o M un lugar a la izquierda. El bit 0 está cargado desde el bit C. El bit C está cargado desde MSB de ACCA, X, o M. Las instrucciones de rotación incluyen el bit de acarreo para permitir la extensión de las operaciones de desplazamiento y de rotación a los múltiples bytes. Por ejemplo, para desplazar un valor de 24-bits un bit a la derecha, se podría usar la sucesión {ASL BAJO, ROL MEDIO, ROL ALTO} donde BAJO, MEDIO y ALTO, se refiere a la parte baja, media y alta del byte de valor de 24-bits, respectivamente.

Códigos de condición y Formula Boleana

			Η	I	N	Z	C
1	1	1			\$	\$	\$

N *R7*

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

Z
$$\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$$

Se pone a 1 si el resultado es \$00; de lo contrario se pone a 0.

C b7

Se pone a 1 si antes de la rotación, el MSB de ACCA o M era 1; de lo contrario se pone a 0.


Código	Modo de	Código Máquina		Ciclos
Fuente	Direccionamiento	Opcode	Operando(s)	
ROLA	INH (A)	49		3
ROLX	INH (X)	59		3
ROL (opr)	DIR	39	dd	5
ROL ,X	IX	79		5
ROL (opr),X	IX1	69	ff	6

ROR - Rotación a la Derecha por Acarreo

Operación:

Descripción: Desplaza todos los bits de ACCA, X o M un lugar a la derecha. El bit 7 está cargado desde el bit C. Las operaciones de rotación incluyen el bit de acarreo para permitir la extensión de las operaciones de desplazamiento y de rotación a los múltiples bytes. Por ejemplo, para desplazar un valor de 24-bits a la derecha un bit, se puede usar la sucesión {LSR ALTO, ROR MEDIO, ROR BAJO} donde ALTO, MEDIO y BAJO se refiere a la parte alta, media y baja del byte de valor de 24-bits, respectivamente.

Códigos de condición y Formula Boleana

			Η	I	N	Z	C
1	1	1	_	_	\$	\$	\$

N *R7*

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

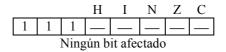
Z $\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$

Se pone a 1 si todos los bits del resultado se pone a 0; de lo contrario se pone a 0.

C b

Se pone a 1 si antes de la rotación, el LSB de ACCA o M era 1; de lo contrario se pone a 0.

Código	Modo de	Código	Ciclos	
Fuente	Direccionamiento	Opcode	Operando(s)	
RORA	INH (A)	46		3
RORX	INH (X)	56		3
ROR (opr)	DIR	36	dd	5
ROR ,X	IX	76		5
ROR (opr),X	IX1	66	ff	6



RSP - Reset del Puntero de Pila

Operación: SP ← \$00FF

Descripción: Reset al puntero de pila en la parte alta de la pila.

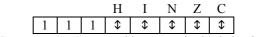
Códigos de condición y Formula Boleana

Forma, Modos de Direccionamiento, Código Máquina y Ciclos

Código	Modo de	Código	Código Máquina		
Fuente	Direccionamiento	Opcode	Operando(s)		
RSP	INH	9C		2	

81

RTI - Retorno de la Interrupción


Operación: $SP \leftarrow (SP) + \$0001; \uparrow CCR$ Restablece el CCR desde la pila

 $SP \leftarrow (SP) + \$0001; \uparrow ACCA$ Restablece el ACCA desde la pila $SP \leftarrow (SP) + \$0001; \uparrow X$ Restablece el X desde la pila $SP \leftarrow (SP) + \$0001; \uparrow PCH$ Restablece el PCH desde la pila

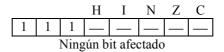
 $SP \leftarrow (SP) + \$0001; \uparrow PCL$ Restablece el PCL desde la pila

Descripción: Se restablece el código de condición, el acumulador, el registro del índice y el contador de programa, que previamente al estado guardado en la pila. Se restablece a bit 1 si el bit correspondiente guardado en la pila es 0.

Códigos de condición y Formula Boleana

Se pone a 1 o 0 según el byte sacado desde la pila.

Código	Modo de	Código	Código Máquina		
Fuente	Direccionamiento	Opcode	Operando(s)		
RTI	INH	80		9	


RTS - Retorno de Subrutina

Operación: $SP \leftarrow (SP) + \$0001; \uparrow PCH$ Restablece PCH desde la pila

 $SP \leftarrow (SP) + \$0001; \uparrow PCL$ Restablece PCL desde la pila

Descripción: El puntero de pila es incrementado por uno. El contenido del byte de la memoria que se apunta por el puntero de pila está cargada en el byte de la parte alta del contador del programa. El puntero de pila es de nuevo incrementado por uno. El contenido del byte de la memoria a la dirección ahora contenida en el puntero de pila está cargado en los 8 bits de la parte baja del contador de programa.

Códigos de condición y Formula Boleana

Código	Modo de	Código	Código Máquina		
Fuente	Direccionamiento	Opcode Operando(s)			
RTS	INH	81		6	

SBC - Subtracción con Acarreo

Operación: $ACCA \leftarrow (ACCA) - (M) - (C)$

Descripción: Substrae los contenidos de M y C de los contenidos de ACCA, pone el resultado en ACCA.

Códigos de condición y Formula Boleana

N *R7*

Se pone a 1 si el resultado del MSB es 1; de lo contrario se pone a 0.

Z $\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$

Se pone a 1 si el resultado es \$00; de lo contrario se pone a 0.

C
$$\overline{A7} \bullet M7 + M7 \bullet R7 + R7 \bullet \overline{A7}$$

Se pone a 1 si el valor absoluto de los contenidos de la memoria más el acarreo anterior, es más grande que el valor absoluto del acumulador; de lo contrario se pone a 0.

Código Modo de		Códi	Código Máquina			
Fuente	Direccionamiento	Opcode	Opera	ndo(s)		
SBC (opr)	IMM	A2	ii		2	
SBC (opr)	DIR	B2	dd		3	
SBC (opr)	EXT	C2	hh	11	4	
SBC ,X	IX	F2			3	
SBC (opr),X	IX1	E2	ff		4	
SBC (opr),X	IX2	D2	ee	ff	5	

SEC - Pone a 1 el bit de Acarreo

Operación: bit $C \leftarrow 1$

Descripción: Pone a 1 el bit C en el CCR. La instrucción SEC se puede usar para preparar el bit C antes de una instrucción de desplazamiento o de rotación que involucre el bit C.

Códigos de condición y Formula Boleana

			Η	I	N	Z	C
1	1	1					1

C Se pone a 1

Código	Modo de	Código	Código Máquina		
Fuente	Direccionamiento	Opcode	Operando(s)		
SEC	INH	99		2	

SEI - Pone a 1 el Bit de la Máscara de Interrupción

Operación: bit $I \leftarrow 1$

Descripción: Pone a 1 el bit de máscara de interrupción en el CCR. El microprocesador se inhibe del servicio de interrupciones mientras que el bit I es 1.

Códigos de condición y Formula Boleana

			Η	I	N	Z	C
1	1	1		1			

I Se pone a 1

Código	Modo de	Código	Código Máquina		
Fuente	Direccionamiento	Opcode	Operando(s)		
SEI	INH	9B		2	

STA - Guarda el Acumulador en la Memoria

Operación: $M \leftarrow (ACCA)$

Descripción: Guarda los contenidos de ACCA en la memoria. Los contenidos de ACCA permanecen inalterados.

Códigos de condición y Formula Boleana

			Η	I	N	Z	C
1	1	1			\$	\$	

N A7

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

 $\mathbf{Z} \qquad \overline{A7} \bullet \overline{A6} \bullet \overline{A5} \bullet \overline{A4} \bullet \overline{A3} \bullet \overline{A2} \bullet \overline{A1} \bullet \overline{A0}$

Se pone a 1 si el resultado es \$00; de lo contrario se pone a 0.

Código Modo de		Códi	Código Máquina			
Fuente	Direccionamiento	Opcode	Opcode Operando(s)			
STA (opr)	DIR	В7	dd		4	
STA (opr)	EXT	C7	hh	11	5	
STA ,X	IX	F7			4	
STA (opr),X	IX1	E7	ff		5	
STA (opr),X	IX2	D7	ee	ff	6	

STHX - Guarda el Registro de Índice

Operación: $(M:M + \$0001) \leftarrow H:X$

Descripción: Guarda el registro de índice (H:X) en la posición de memoria especificada. Los códigos de condición se ponen a 1 de acuerdo con el dato.

Códigos de condición y Formula Boleana

V: (

Se pone a 0.

N: R7

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

$$\underline{\mathbf{z}} \colon \quad \overline{\mathbf{R}15} \bullet \overline{\mathbf{R}14} \bullet \overline{\mathbf{R}13} \bullet \overline{\mathbf{R}12} \bullet \overline{\mathbf{R}11} \bullet \overline{\mathbf{R}10} \bullet \overline{\mathbf{R}9} \bullet \overline{\mathbf{R}8} \bullet \overline{\mathbf{R}7} \bullet \overline{\mathbf{R}6} \bullet \overline{\mathbf{R}5} \bullet \overline{\mathbf{R}4} \bullet \overline{\mathbf{R}3} \bullet \overline{\mathbf{R}2} \bullet \overline{\mathbf{R}2} \bullet \overline{\mathbf{R}10} \bullet$$

Se pone a 1 si el resultado es \$0000; de lo contrario se pone a 0.

Código Fuente	Modo de Direccionamiento	Código	Máquina	HC08 Ciclos
	Direccionamiento	Opcode	Operando(s)	Cicios
STHX opr	DIR	35	dd	4

STOP - Habilita la IRQ y Para el Oscilador

Descripción: Reduce el consumo de potencia eliminando toda disipación de potencia dinámica. Esto resulta por: 1) Se ponen a 0 los 'prescalers' del temporizador, 2) Deshabilita las interrupciones del temporizador, 3) Pone a 0 el 'flag' de interrupción del temporizador, 4) Habilita la petición de interrupción externa y 5) Inhibe el oscilador.

Cuando un RESET o la entrada de IRQ se pone en estado bajo, se habilita el oscilador, se inicia un retardo de 1920 ciclos de reloj del procesador, permitiendo que el oscilador se estabilice, se saca el vector de petición de interrupción o el vector de reset y se ejecuta la rutina de servicio, dependiendo del signo que fue aplicado.

Se habilitan interrupciones externas siguiendo el comando STOP.

Códigos de condición y Formula Boleana

			Η	I	N	Z	C
1	1	1		0			

I Se pone a 0

Código	Modo de	Código	Código Máquina		
Fuente	Direccionamiento	Opcode	Operando(s)		
STOP	INH	8E		2	

STX - Guarda el Registro de Índice X en la Memoria

Operación: $M \leftarrow (X)$

Descripción: Guarda los contenidos de X en la memoria. Los contenidos de X permanecen inalterados.

Códigos de condición y Formula Boleana

			Η	I	N	Z	C
1	1	1					

N *X*7

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

 $\overline{X7} \bullet \overline{X6} \bullet \overline{X5} \bullet \overline{X4} \bullet \overline{X3} \bullet \overline{X2} \bullet \overline{X1} \bullet \overline{X0}$

Se pone a 1 si el resultado es \$00; de lo contrario se pone a 0.

Código	Modo de	Código Máquina			Ciclos
Fuente	Direccionamiento	Opcode Operando(s)			
STX (opr)	DIR	BF	dd		4
STX (opr)	EXT	CF	hh	11	5
STX ,X	IX	FF			4
STX (opr),X	IX1	EF	ff		5
STX (opr),X	IX2	DF	ee	ff	6

SUB - Substracción

Operación: $ACCA \leftarrow (ACCA)-(M)$

Descripción: Substrae los contenidos de la M de los contenidos del ACCA y pone el resultado en el ACCA.

Códigos de condición y Formula Boleana

				Η	I	N	Z	C
ſ	1	1	1			\$	\$	\$

N *R7*

Se pone a 1 si el resultado del MSB es 1; de lo contrario se pone a 0.

Z $\overline{R7} \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$

Se pone a 1 si todos los bits del resultado están a 0; de lo contrario se pone a 0.

C
$$A7 \bullet M7 + M7 \bullet \overline{R7} + \overline{R7} \bullet A7$$

El bit C ('flag' de acarreo) en el registro de código de condición se pone a 1 si el valor absoluto de los contenidos de la memoria es más mayor que el valor absoluto del acumulador; de lo contrario se pone a 0.

Código	Modo de	Códi	go Máquin	ıa	Ciclos
Fuente	Direccionamiento	Opcode	e Operando(s)		
SUB (opr)	IMM	A0	ii		2
SUB (opr)	DIR	В0	dd		3
SUB (opr)	EXT	C0	hh	11	4
SUB ,X	IX	F0			3
SUB (opr),X	IX1	E0	ff		4
SUB (opr),X	IX2	D0	ee	ff	5

SWI - Interrupción por Software

Operación: $PC \leftarrow (PC) + \$0001$ Avanza el PC para devolver la dirección

 \downarrow (PCL); SP ← (SP) – \$0001 Pone la parte baja de la dirección de retorno hacia la pila \downarrow (PCH); SP ← (SP) – \$0001 Pone la parte alta de la dirección de retorno hacia la pila

 \downarrow (X); SP ← (SP) – \$0001 Pone el registro de índice hacia la pila \downarrow (ACCA); SP ← (SP) – \$0001 Pone el acumulador hacia la pila \downarrow (CCR); SP ← (SP) – \$0001 Pone el CCR hacia la pila

Bit $I \leftarrow 1$

PCH \leftarrow (\$xFFC) Saca el vector (x= 1 o 3 dependiendo del dispositivo HC05

 $PCL \leftarrow (\$xFFD)$

Descripción: El contador de programa es incrementado por uno. El contador de programa, el registro de índice y el acumulador se Ponen hacia la pila. Los bits del CCR se Ponen hacia la pila, con los bits H, I, N, Z y C que van a las posiciones de los bits de 4–0 y los bits de las posiciones 7, 6 y 5 contienen unos. El puntero de pila es decrementado en uno, después de cada byte de datos se guarda en la pila. Entonces el bit de máscara de interrupción es 1. El contador de programa es cargado con la dirección guardada en el vector de SWI (localizado en las posiciones de memoria n–0002 y n–0003, donde 'n' es la dirección que corresponde a un estado alto de todas las líneas del bus de direcciones). La dirección del vector de SWI se puede expresar como \$xFFC:\$xFFD, donde 'x' es 1 o 3 dependiendo del dispositivo MC68HC05 usado. Esta instrucción no es enmascarable por el bit I.

Códigos de condición y Formula Boleana

			Η	I	N	Z	C
1	1	1		1			

I Se pone a 1

Código	Modo de	Código	Código Máquina	
Fuente	Direccionamiento	Opcode	Operando(s)	
SWI	INH	83		10

STHX - Guarda el Registro de Índice

Operación: $(M:M + \$0001) \leftarrow H:X$

Descripción: Guarda el registro de índice (H:X) en la posición de memoria especificada. Los códigos de condición se ponen a 1 de acuerdo con el dato.

Códigos de condición y Formula Boleana

V: (

Se pone a 0.

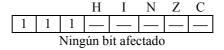
N: R7

Se pone a 1 si el resultado MSB es 1; de lo contrario se pone a 0.

$$\underline{\mathbf{z}} \colon \quad \overline{\mathbf{R}15} \bullet \overline{\mathbf{R}14} \bullet \overline{\mathbf{R}13} \bullet \overline{\mathbf{R}12} \bullet \overline{\mathbf{R}11} \bullet \overline{\mathbf{R}10} \bullet \overline{\mathbf{R}9} \bullet \overline{\mathbf{R}8} \bullet \overline{\mathbf{R}7} \bullet \overline{\mathbf{R}6} \bullet \overline{\mathbf{R}5} \bullet \overline{\mathbf{R}4} \bullet \overline{\mathbf{R}3} \bullet \overline{\mathbf{R}2} \bullet \overline{\mathbf{R}2} \bullet \overline{\mathbf{R}10} \bullet$$

Se pone a 1 si el resultado es \$0000; de lo contrario se pone a 0.

Código Fuente	Modo de	Código	Máquina	HC08 Ciclos
	Direccionamiento	Opcode	Operando(s)	Cicios
STHX opr	DIR	35	dd	4

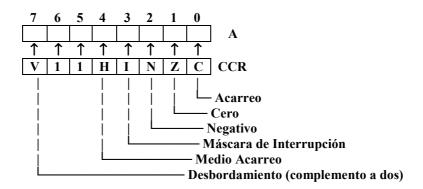


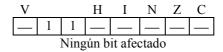
TAX - Transfiere el Acumulador al Registro de Índice

Operación: $X \leftarrow (ACCA)$

Descripción: Carga el registro de índice con los contenidos del acumulador. Los contenidos del acumulador no se alteran.

Códigos de condición y Formula Boleana


Código	Modo de	Código	Código Máquina	
Fuente	Direccionamiento	Opcode Operando(s)		
TAX	INH	97		2


TPA - Transfiere el Registro de Código de Condición al Acumulador

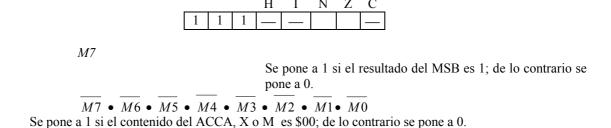
Operación: $(A) \leftarrow (CCR)$

Descripción: Transfiere los contenidos del registro de código de condición (CCR) en el acumulador (A).

Códigos de condición y Formula Boleana

Código Fuente	Modo de	Código Máquina		HC08 Ciclos
	Direccionamiento	Opcode	Operando(s)	Cicios
TPA	INH	85		1

TST - Prueba para Negativo o Cero


Operación: (ACCA) - \$00 o: (X) - \$00 o: (M) - \$00

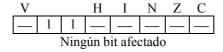
Descripción: Pone a 1 los bits N y Z del código de condición, según los contenidos del ACCA, X o M. Los contenidos del ACCA, X y M no se alteran.

Códigos de condición y Formula Boleana

N

 \mathbf{Z}

Código	Modo de	Código Máquina		Ciclos
Fuente	Direccionamiento	Opcode Operando(s)		
TSTA	INH (A)	4D		3
TSTX	INH (X)	5D		3
TST (opr)	DIR	3D	dd	4
TST ,X	IX	7D		4
TST (opr),X	IX1	6D	ff	5



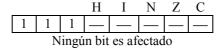
TSX - Transfiere el Puntero de Pila al Registro de Índice

Operación: $H:X \leftarrow (SP + \$0001)$

Descripción: Carga el registro de índice (H:X) con 1 más el contenido del puntero de pila (SP). Los contenidos del SP no cambian. Después de una instrucción TSX, H:X apunta al último valor que fue guardado en la pila.

Códigos de condición y Formula Boleana

Código Fuente	Modo de	Código Máquina		HC08
	Direccionamiento	Opcode	Operando(s)	Ciclos
TSX	INH	95		2



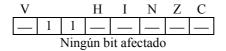
TXA - Transfiere el Registro de Índice al Acumulador

Operación: $ACCA \leftarrow (X)$

Descripción: Carga el acumulador con el contenido del registro de índice. No se altera el contenido del registro de índice.

Códigos de condición y Formula Boleana

Código	Modo de	Código	Ciclos	
Fuente	Direccionamiento	Opcode	Operando(s)	
TXA	INH	9F		2



TXS - Transfiere el Registro de Índice al Puntero de Pila

Operación: $SP \leftarrow (H:X - \$0001)$

Descripción: Carga el puntero de pila (SP) con el contenido del registro de índice (H:X) menos 1. Los contenidos del H:X no cambian.

Códigos de condición y Formula Boleana

Código Fuente	Modo de	Código	HC08	
	Direccionamiento	Opcode	Operando(s)	Ciclos
TXS	INH	94		2

WAIT - Habilita la Interrupción, Para el Procesador

Descripción: Reduce el consumo de potencia, eliminando la disipación de potencia dinámica. El temporizador, el prescaler del temporizador y los periféricos internos continúan operando porque ellos son fuentes potenciales de una interrupción. La instrucción WAIT provoca la habilitación de las interrupciones poniendo a 0 el bit I en el CCR y se paran los relojes de los circuitos del procesador.

Pueden habilitarse las interrupciones de los periféricos internos o pueden desactivarse por bits de control local anteriores a la ejecución de la instrucción WAIT.

Cuando un RESET o la entrada de IRQ se pone a un nivel bajo o cuando cualquier sistema interno hace una petición del servicio de interrupción, se habilitan los relojes del procesador y se procesa el reset, la IRQ u otra petición de servicio de interrupción.

Códigos de condición y Formula Boleana

			Η	I	N	Z	C
1	1	1	_	0	_	_	_

I Se pone a 0

Código	Modo de	Código	Código Máquina		
Fuente	Direccionamiento	Opcode	Operando(s)		
WAIT	INH	8F		2	